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Abstract

This dissertation presents three essays which are organized as chapters. Each chapter,

with its own feature, is focusing on parsimonious estimation of Vector Autoregressive

(VAR) models. The newly presented models are applied to some issues in macroeco-

nomics.

VARs are widely used in economic analysis and forecasting probably due to its easy

tractability and the power in exposing and exploring complicated dynamic process in

a modern economy such as shocks, channels and their links. Researchers sometimes

would like to include more observations in VARs in order to have a broad investiga-

tion into the economy. In addition, this analysis, in particular, currently has extended

to time variation in parameters so as to capture the possibly changing dynamics. These

two will inevitably cause parameter proliferation. The over-fitting caused by hoping

including more variables and extending to time variation in parameters and wide ap-

plications because of tractability and detecting power motivate my research interest

in parsimonious modeling, estimation and applications as well as comparisons in this

dissertation.

In the first chapter, I extend the previous parsimonious estimation on constant coeffi-

cients to time varying coefficients. It is desirable since when time dimension is taken

into account, the number of parameters rises with time periods while number of obser-

vations still fixed there, the same as in constant parameter estimation. I use stochastic

variable selection method over the time dimension, that is, the time varying dynamics

of each coefficient in a TVP-VAR model is checked. I estimate the model via Bayesian
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method based on the sensitivity of variation of conditional likelihood when the coef-

ficient considered in the model or not. If the coefficient has more contribution to the

likelihood, the posterior tends to give more probability of staying in the system. Nev-

ertheless, if the parsimonious check is imposed on every coefficient in the model, the

computational burden will substantially increase because this estimation is essential

a mixed model estimation such that every possible model needs to be checked. The

number of candidate models increases with time dimension. I suggest two ways to al-

leviate it. One is from model setting that we can check the variables we are interested

in collected together as a whole. In other words, we can do block checking rather than

single checking. The other is from the efficiency of the numerical computation which

is conducted in two dimensions. We construct large matrices to replace Kalman for-

ward filter and backward smoother in order to reduce the procedures in each iteration

in Bayesian simulation. On the other hand, the structure of the large matrix is sparse

which further make the computation efficient. The single-checking-based TVP–VAR

with stochastic volatility is used to estimate the changes in monetary policy stance

and agents’ behavior to policy shocks over time. With the most parsimonious estima-

tion, I still cannot find significant changes both in policy stance and in the reaction of

economic agents to the non-systematic monetary policy shocks.

In the second chapter, I present a general parsimonious estimation on the time vary-

ing parameter VAR with stochastic volatility via factor idea. That is, the far lags

are driven by recent lags; the time variation in coefficients on regressors is driven by

several factors and therefore the covariance matrix of innovations to the coefficients

become reduced rank. Lastly, we use a latent factor, namely, the common volatility to

represent full stochastic volatility based on the empirical evidence that the estimated

volatilities of most macroeconomic variables share the similar pattern. Note that the

model I present concentrates on how to reduce the dimension of the parameters, not the

dimension of large data set such as factor models like dynamic factor models or factor
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augmented models. The model is estimated by Bayesian simulation. Each estimation

procedure or block is presented in this chapter. Based on the general treatment, the es-

timation procedures can be freely combined with some proper modification depending

on the specific research object. I give an empirical analysis by the factor driven model.

The analysis is based on the typical small scale monetary VAR. Principal component

analysis shows that small scale TVP-VAR is still over-fitting very much, can be driven

by several factors and that early lags are not suitable to drive far lags that will cause

dynamic contamination. Therefore parsimonious estimation via factors on time vary-

ing coefficients and common volatility is used to estimate the small scale monetary

VAR. Focusing on agent response to monetary policy shocks, I cannot find significant

difference among different time periods.

In the last chapter, I consider a large Bayesian VAR that contains 28 variables. The

variables cover a broad range of the U.S economy including labor market, housing

market, bonds market and so on. High dimensional observations are desirable by re-

searchers because this setting can give a strong background of the whole economy, re-

ducing potential missing variables that are critical for the transmission of some shocks

of interest. A large number of endogenous variables will increase the degree of param-

eter proliferation. I use proper priors that can shrink values of coefficients to conduct

an empirical analysis on monetary policy shocks, financial shocks and uncertainty

shocks. I find that for the effects of monetary policy shocks, the impulse response

functions are almost perfectly in line with theoretical predictions. For the financial

shocks and uncertainty shocks, we analyze them jointly. Both positive financial and

uncertainty shocks have negative effects on real activities, however, financial shocks

have more persistent effects on these variables than uncertainty shocks. We also find

that financial variables care more for uncertainty shocks compared to financial shocks.
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Chapter 1

The Restricted Bayesian Vector

Autoregressions and Monetary Policy

Estimation
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1.1 Introduction

Many economists have found that there is strong evidence that the U.S. economy experienced

higher and more volatile unemployment and inflation in the last century 70’s and the early 80’s

than the following years. It’s natural to relate the U.S. monetary policy to the bad performance

and ask the question of whether high inflation and slow growth during that period were due to bad

policy or bad luck. The literature generally gives two main explanations. One (e.g. Blanchard

and Simon, 2001; Koop, Leon-Gonzalez and Strachan, 2009; Primiceri, 2005; Sims and Zha,

2006; Stock and Watson, 2002a ) focuses on exogenous shocks, which have been much more

volatile in the 1970’s and early 1980’s than in the rest of the sample. They argued that the variance

of the exogenous shocks has changed over time and that this alone may explain many apparent

changes in monetary policy. This is ‘bad luck’ story, i.e. in the 1970s volatility was high, whereas

later policymakers had the good fortune of the Great Moderation of the business cycle. Koop,

Leon-Gonzalez and Strachan (2009) and Primiceri (2005) using the method of time-varying vector

autoregression, they still find exogenous shocks play an overwhelming role. Therefore, I put them

in this respect. The second emphasizes the changes in the transmission mechanism—the way

macroeconomic variables respond to shocks. Particular attention gives to monetary policy reaction

function. Some authors (e.g. Boivin and Giannoni, 2006, Cogley and Sargent, 2001, and Lubik

and Schorfheide, 2004)) have argued that the way the Fed reacted to inflation has changed over

time. They think that the Fed was less active in fighting inflation pressures under the chairmanship

of Burns than under Volker and Greenspan. This is ‘bad policy’ story.

However, these explanations are controversial. For example, Bernanke and Mihov (1998),

Hanson (2003), Leeper and Zha (2003) found that litter evidence of changes in the systematic part

of monetary policy and Sims (1999, 2001) found no evidence of unidirectional drifts in policy

toward a more active behavior.

From the methodological perspective, many versions of Bayesian Vector Autoregressions (BVAR)

in this field are well developed. Here, I just pick up some representatives. Sims and Zha (2006)

used Bayesian VAR with multivariate stochastic volatility but no time-varying parameters. Cogley

2
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and Sargent (2001) developed a time-varying parameters VAR model without stochastic volatil-

ity. Later they (2005) further extend a Bayesian VAR model with time-varying parameters and

multivariate stochastic volatility. The volatility however is too restrictive. This model allows the

simultaneous relations among variables are time invariant i.e. covariance is constant and vari-

ance is dynamic. In impulse response analysis, it can be shown that this restriction implies that

a shock to the ith variable has an effect on the jth variable which is constant over time. In some

macroeconomic applications, relationships might not be the case. Boivin (2001) considered time

varying simultaneous relations, but ignored potential heteroscedasticity of innovations. Ciccarelli

and Rebucci (2003) extend a t-distribution of errors based on the Boivin (2001) model; Finally,

Primiceri (2005) got the time varying parameters and loose multivariate volatility together. Loose

multivariate volatility means no restriction imposed on the covariance and variance parameters in

error matrix, totally time-varying now. This flexible approach can be regarded as today’s standard

time varying VAR workhorse and is widely used in empirical macroeconomics.

It seems surprising, however natural that all models above and further modifications are all

Bayesian. First, if the model is a time invariant parameter VAR, in terms of classical estimation,

for instance, a VAR involving 5 dependent variables with 4 lags contains 105 parameters. Gen-

erally, in a quarterly macroeconomic data set, the number of observations on each variable might

be a few hundred and for some reason, usually a segment, not all range is picked up for a specific

analysis. That implies that maybe a few data is shared for each parameter estimation—the informa-

tion density is too low. If the model is extended to a time variant one, apparently more parameters

will be created. Think how many observations of data we should have to make the estimation and

further features of interest like forecasts and impulse responses precise. It’s impossible! Second, if

the variance of the time varying coefficients is small, the classical maximum likelihood estimator

of this variance has a point mass at zero. This is so called pile-up problem (Sargent and Bhargava,

1983; Shephard and Harvey, 1990; Stock and Watson, 1998). The third, the maximum likelihood

method often meets optimization problem when model dimensionality is multiple and no longer

linear. Such a complicated model will highly probably have a multivariate likelihood function of

3
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regions containing many local peaks and it’s difficult to distinguish which one is global. More-

over, if these peaks are very narrow, the likelihood may reach particularly high values, not at all

representative of the model’s fit on a wider and more interesting parameter region. Altogether, rich

parameters and potential problems in maximum likelihood with limited observations of data sets

make the classical estimation not suitable for some researches. A Bayesian method is naturally

introduced. In a Bayesian setting, not as many observations are needed, of course the more, the

better; Given a uninformative prior together with likelihood function, posterior mean and variance

of parameters and features of interest can be obtained from convergent therefore stable distribu-

tions by using Markov chain Monte Carlo (MCMC) method. The Gibbs sampler is a variant of

MCMC and widely used in these models. It consists of drawing from lower dimensional condi-

tional posteriors as opposed to the high dimensional joint posterior of the whole parameter set.

Bayesian vector autoregressions with Markov Chain Monte Carlo are a good and suitable ap-

proach to estimate parameters, especially in the form of time variation. However, implicitly it is

assumed that all parameters of every draw from some stable posterior distributions are efficient

and should exist in the model. Simply speaking, all parameters in this Bayesian model are given

significant before you start estimate, i.e., every one is counted in. In reality, it’s not the case. Let’s

compare it with classical vector autoregressions first. In the context of classical estimation, the

usual way to test a coefficient in a model whether or not significant relative to zero is t-test or

F-test. We get the p-value of the coefficient and then compare it with significant level in some

distribution to decide reject or accept the null hypothesis. Anyhow, a specific way of testing pa-

rameter significance is already at hand in the field of classical estimation. Nevertheless, when

the same concern comes to Bayesian VAR and determine which coefficient is significant by some

methodology, how to deal with this problem? I am very interested in it.

To my best knowledge, I only find two articles about this issue in Bayesian field. One is Kuo

and Mallick (1997), the other is Korobilis (2013b). The former presented the coefficients to be

precisely zero if the indicator of the corresponding coefficient is zero (for instance, γ j is the corre-

sponding indicator for β j, when β j = 0 if γ j = 0); The latter has extended the use of such methods
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to VARs for forecasting considering possible economic structure change and policy regime switch

that has been well documented in related literature, especially in the field of monetary policy and

business cycles. A Markov chain Monte Carlo method (I will give details later) is created to obtain

the posterior probability of each indicator after many times of iterations, therefore the posterior

probability of parameter corresponding to this indicator. A criteria probability is set to compare

with the probability of each indicator, namely, corresponding parameter. If the posterior prob-

ability of the parameter is greater than the criteria probability, then the parameter is said to be

significant with high confidence and should stay in the Bayesian model. It looks like a test as in

classical estimation.

This restricted vector autoregression method chosen by indicators has three advantages. First,

variable selection is automatic, meaning that along with estimates of parameters we get associ-

ated probabilities of inclusion of each parameter in the ‘best model’. For instance, in a VAR of

5 dependent variables with 4 lags I used before, the indicators tells us which elements of coeffi-

cient matrices should be included or excluded from the final optimal model, thus implementing

a selection among all possible VAR model combinations, without the need to estimate each and

everyone of these models. Second, this form of Bayesian variable selection is independent of the

prior assumptions about parameter matrices. That is, if the researcher had defined any desirable

prior for her parameters of the unrestricted model, adopting the variable selection restriction needs

no other modification than one extra block in the posterior sampler that draws from the conditional

posterior of the indicators. Finally, unlike other proposed stochastic search variable selection al-

gorithms for VAR models (George et al., 2008), this form of variable selection may be adopted in

many nonlinear extensions of VAR models.

The contribution of this paper is threefold. One is on methodology. In Korobilis (2013b), he

extends stochastic variable selection method to constant parameter VAR and limited time-varying

parameter VAR without stochastic volatility, respectively. This type of time variation in the context

of TVP-VAR framework in Korobilis (2013b) only refer to one of coefficients either keep existing

and time varying over time or not. Here, based on his model, I extend the potential time variation

5
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to each and every coefficient, namely, it allows each and every coefficient of TVP-VAR to shift

over time with corresponding posterior probability of present or not, but not necessarily the next

time. Whether or not the coefficient is time varying is totally determined by data, period by pe-

riod. Furthermore, I could also add loose stochastic volatility, i.e. both variance and covariance

parameters of innovation matrix are time-variant – some econometricians call this volatility model

heteroskedastic TVP-VAR – with several extra blocks embedded in original iteration route. One

thing worth mention is that since the method looks into determining whether every and each co-

efficient in the TVP-VAR exist or not over time, the computational burden is high and thus time

consuming. To increase computational efficiency, we use the precision based algorithm of Chan

and Jeliazkov (2009) to replace typical procedure of Kalman filter and Smoother (forward filtering

and backward smoothing) for an estimation of linear and gaussian state-space models. The second

is that perhaps the first one implements the stochastic variable selection time-varying parameters

autoregression with stochastic volatility on monetary policy analysis. We find that, more precisely

than extant literature, there are no significant systematic shifts in monetary stance and economic

agents’ behavior due to exogenous monetary policy shock. The last but not the least is that we give

an Bayesian statistic proof of the stability of small monetary VAR system. This is done by two

steps. we first check variable significance over time due to proliferation of parameters in VAR sys-

tem under limited data availability; second, we only focus on large breaks because generally, only

the large ones have high potential to be candidates of structural change.1 Since typical TVP-VAR

is a type of model whose latent parameters vary every time, the accounting of small breaks may

take over some strength from original true large breaks, which may cause misleading. We solve

this problem with a modified TVP-VAR augmented with a discrete Markov process.

The paper is organized as follows. In the second section, we present three stochastic variable

selection models step by step from static to time variation and from without stochastic volatility

to with it. We give basic Bayesian estimation procedure for each model and more importantly,

also explore their internal relations among these models; The third section discusses estimation

1Note that breaks are not necessarily equivalent to systematic changes. Systematic changes imply some ‘deep
parameters’ have changed in DSGE models.
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issues on stochastic volatility and stochastic variable selection as well as efficient implementation

of computation; In section 4, we use these models to estimate and evaluate whether there were

regime switches in monetary policy and structural changes in the U.S. economy, then give our

findings and interpretation; Section 5 conducts robust check and the last section 6 concludes.

1.2 Models in stochastic variable selection

This section gives three models that are mutually relevant and become fledged step by step, mod-

eling gradually close to economic reality. I present a basic description of each model. The first is

stochastic variable selection time-invariant parameter model, namely stochastic variable selection

Bayesian VAR for which I use SVS-BVAR for short. The second is stochastic variable selection

partial time-varying parameter model, in which setup parameters either exist all time or not. I

use SVS-Partial-TVP-VAR for short for this model. The last, newly developed in this chapter,

is stochastic variable selection full time-varying parameter model where parameters either exist

or not period by period. I call it SVS-Full-TVP-VAR. The three models can be imbeded with a

stochastic volatility part, taking into account dynamics of exogenous shocks.

At the starting point, I should clarify some notations associated with these models.2 A usual

form of VAR should be transformed into a reduced form for convenient analysis. The VAR(p) of

p− lag and M dimensionality with constant parameters can be written as:

yt = c+A1yt−1 + · · ·+Apyt−p + εt (1.1)

where yt is an M×1 vector, c is an M×1 constant, {Ai}p
i=1 are M×M matrices, and εt is an M×1

vector of shocks following normal distribution εt ∼ N(0,Σ) , for t = 1, . . . ,T . The (1.1) can be

transformed into a compact form

yt = Ztβ + εt (1.2)

2These notations apply to all the three chapters.
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where Zt = IM � [1,y
′
t−1, . . .y

′
t−p] and β = vec([c,A1, . . .Ap]

′
), with � and vec Kronecker product

and column stacking operator, respectively.

Above is just simple expression for writing convenience. If in terms of estimation, i.e. nesting

all data together in big matrices, two forms are found. One is Canova (2007) and others; the other

is, for example, Kadiyala and Karlsson (1997). The former arises if we use an T M× 1 vector

y which stack all T obsevations on the first dependent variables, then all T observations on the

second dependent variables, etc., i.e. y = [y1:T ′
1 , . . . ,y1:T ′

M ]′ where y1:T
i denote observations of yi in a

column from time 1 to time T . The latter arises if we define Y to be T ×M matrix which stacks the

T observations on each dependent variable in columns next to one other, i.e. Y =
[
y1:T

1 , . . . ,y1:T
M
]
.

ε and E denote stackings of the errors in a manner conformable for y and Y , respectively. Define

xt = [1,y
′
t−1, . . . ,y

′
t−p]

′
and X = [xt , . . . ,xT ]

′
. Note that if we let K = 1+M · p be the number of

coefficients in each equation of the VAR, the X is a T ×K matrix. Finally, if A = [c,A1, . . . ,Ap]
′
,

we define β = vec(A) that is a K ·M×1 vector which stacks all the VAR coefficients including the

intercepts into a column vector. With all these definitions, we can write the VAR either as

Y = XA+E KK version (1.3)

or

y = (IM �X)β + ε Canova version (1.4)

where y = vec(Y ) from above definitions and ε ∼ N(0,Σ� IT ).3

If parameters are time variant, the form of VAR accordingly becomes

yt = ct +A1,tyt−1 + · · ·+Ap,tyt−p +ut (1.5)

or compactly

yt = Ztβt +ut

3Equation (1.4) can be derived from equation (1.3) via vec(ABC) = (C′�A)vec(B).
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where Zt = IM �
[
1,y′t−1, . . . ,y

′
t−p
]
, βt = vec

(
[ct ,A1,t , . . . ,Ap,t ]

′) and ut ∼ i.i.dN(0,Σt) for t =

1, . . . ,T . The stochastic volatility of Σt is introduced in the next subsection. Other details and

modifications will be given in specific models.

Below we get into the stochastic variable selection models with notations defined above.

1.2.1 Stochastic variable selection Bayesian VAR

The VAR model in simple form of (1.2) can be written as

yt = Ztθ + εt (1.6)

where θ = Γ β , Γ = diag(γ) = diag([γ1, . . . ,γKM]
′
) and εt ∼ i.i.dN(0,Σ). We denote γ j the jth

element of the vector γ , which is also jth diagonal element of the matrix Γ, and γ− j the vector γ

with the jth element removed. Priors for parameters in the model are set as

β ∼ NMK(β ,V )

γ j|γ− j ∼ Bernoulli(1,π0, j)

Σ∼ IWishart(S,ν)

where β , V , π0, j, ν and S are hyperparameters set by researchers.

Given the priors above, the full conditional posteriors are

1. Sample β from the posterior density

β |γ,β ,Σ,y,Z ∼ NMK
(
β̄ ,V̄

)

9
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where

V̄ =

(
V−1+

T

∑
t=1

Z?′
t Σ
−1Z?

t

)−1

β̄ = V̄

(
V−1

β+
T

∑
t=1

Z?′
t Σ
−1yt

)
and Z?

t = ZtΓ.

2. Sample γ j from the posterior density

γ j|γ− j,β ,Σ,y,Z ∼ Bernoulli
(
1, π̄ j

)
preferably in random order j, where π̄ j =

l0 j
l0 j+l1 j

, with

l0 j = p(y|θ j,γ− j,γ j = 1)π0 j

and

l0 j = p(y|θ j,γ− j,γ j = 0)(1−π0 j)

The expression p(y|θ j,γ− j,γ j = 1) and p(y|θ j,γ− j,γ j = 0) are conditional likelihood ex-

pressions. Here we define θ ? to be equal to θ but with the jth element θ j = β j in the case

of γ j = 1. Similarly, we define θ ?? to be equal to θ but with the jth element θ j = 0 when

γ j = 0. Then in terms of the likelihood of simple form of VAR for each period, namely

equation (1.6), we can write l0 j, l1 j analytically as

l0 j = exp(−1
2

T

∑
t=1

(yt−Ztθ
?)′Σ−1(yt−Ztθ

?))π0 j (1.7)

l1 j = exp(−1
2

T

∑
t=1

(yt−Ztθ
??)′Σ−1(yt−Ztθ

??))(1−π0 j) (1.8)
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3. Sample Σ from the posterior density

Σ|β ,γ,y,Z ∼ IWishart(ν̄ , S̄)

where

ν̄ = T +ν

and

S̄ = S+
T

∑
t=1

(yt−Ztθ)(yt−Ztθ)
′

4. Go back to setp 1 again, start the next iteration.

This model is fundamental to the following model extensions in three aspects. Firstly, the essen-

tial part that determines the posterior probability of presence for each coefficient is the difference

between the two conditional likelihood l0 j if the coefficient exist and the one l1 j if not. When

l0 j dominate l1 j, the jth coefficient shows up with high posterior possibility supported by data;

Secondly, do not forget the role of prior probability π0 j for each coefficient β j in that prior also

give information to the posterior outcome. When it is assigned with very informative prior due to

some economic theory, say, a very low value for π0 j, the information involved in the conditional

likelihood l0 j, to some extent, will be weakened, while l1 j will be strengthened; Lastly, the Markov

Chain Monte Carlo (MCMC) method based on this model is flexble to accomodate other modifi-

cation, such as time-varying parameters, stochastic volatility widely existed in the time series.

1.2.2 Stochastic variable selection partial TVP-VAR

In this model, compared with the model SVS-BVAR above, the difference is that coefficients are

time variant of the type as in Korobilis (2013b). This time variation as mentioned previously for

some coefficient either exists for the whole time period or not; that is each indicator refers to a

coefficient from period one to the last period, which is illustrated in details below. The model
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specification is

yt = Ztθt + εt (1.9)

βt = βt−1 +ut (1.10)

where θt = Γβt , Γ = daig(γ) = diag([γ1, . . . ,γKM]′), εt ∼ N (0,Σ) and ut ∼ N (0,Q) which are

uncorrelated with each other at all leads and lags. The priors for this models are

β0 ∼ NMK

(
β ,V

)

γ j|γ− j ∼ Bernoulli
(
1, π̄0 j

)
Q∼ IW

(
ξ ,R

)
Σ∼ IW (S,ν)

Estimating these parameters means sampling sequentially from the following conditonal densityies

1. Sample βt |βt−1,Q,Σ,yt ,Z?
t for all t, where Z?

t = ZtΓ, using the Carter and Kohn (1994) filter

and smoother for state-space models. For details on this, please refer to appendix of Prim-

iceri (2005). This step, for computational efficiency, could be replaced by precision based

algorithm of Chan and Jeliazkov (2009), taking full advantage of sparse matrix computation

in commonly used maths and econometrics software.

2. Sample γ j from the density

γ j|γ− j,β ,Σ,y,Z ∼ Bernoulli
(
1, π̄ j

)

12
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preferably in random order j, where π̄ j =
l0 j

l0 j+l1 j
, with

l0 j = p(y|θ 1:T
j ,γ− j,γ j = 1)π0 j

l0 j = p(y|θ 1:T
j ,γ− j,γ j = 0)(1−π0 j)

The expression p(y|θ 1:T
j ,γ− j,γ j = 1) and p(y|θ 1:T

j ,γ− j,γ j = 0) are conditional likelihoods,

where θ 1:T
j =

[
θ1, j, . . . ,θt, j, . . . ,θT, j

]
. Define θ ?

t to be equal to θt but with the jth element

θt, j = βt, j when γ j = 1 for all t = 1, . . . ,T . Similarly, we define θ ??
t to be equal to θt but with

jth element θt, j = 0, namely when γ j = 0, for all t = 1, . . . ,T . Then in the case of TVP-VAR

likelihood of the model, we can write l0 j, l1 j analytically as

l0 j = exp(−1
2

T

∑
t=1

(yt−Ztθ
?
t )
′
Σ
−1(yt−Ztθ

?
t ))π0 j (1.11)

l1 j = exp(−1
2

T

∑
t=1

(yt−Ztθ
?
t )
′
Σ
−1(yt−Ztθ

?
t ))(1−π0 j) (1.12)

3. Sample Q from the posterior density

Q|β ,γ,Σ,y,Z ∼ IW
(
ξ̄ , R̄

)
where

ξ̄ = T +ξ −1

and

R = R̄+
T

∑
t=2

(βt−βt−1)(βt−βt−1)
′

4. Sample Σ from the posterior density

Σ|β ,γ,y,Z ∼ IWishart(ν̄ , S̄)

13
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where

ν̄ = T +ν

and

S̄ = S+
T

∑
t=1

(yt−Ztθt)(yt−Ztθt)
′

5. Go back to step 1, start a new iteration.

One thing to note from step 2 above is that the indicator γ j associate with coefficient β jt from

t = 1, . . . ,T , i.e. Γ matrix is invariant over time. This model specification extending from constant

coefficients to time varying coefficient may be good to forecast, but probably too restrictive for

modeling time series dynamics as some coefficients may appear and disappear mutually during

whole time, not simply keeping existing or not. A nature idea is to assign time variant indicator

to each coefficient in a TVP-VAR model, to capture possible distinct dynamic feature for each

coefficient. We will refer to model 3 below.

1.2.3 Stochastic variable selection full TVP-VAR

This model is based on the stochastic variable selection partial time-varying parameter VAR (Ko-

robilis, 2013b), i.e. the second model above, and incorporates the multivariate stochastic volatility.

The specification of the model has the same formula as equation (1.9) and equation (1.10) but with

time dimension θt = Γtβt , Γt = diag(γt) = diag
(
[γ1,t , . . . ,γKM.t ]

′
)

and εt ∼ N (0,Σt). γ j,t is indic-

tor for corresponding β j,t , either 0 or 1, meaning including and excluding the corresponding β j.t

respectively, for j = 1, . . . ,KM and t = 1, . . . ,T . γ j,t follows Benoulli distribution independently.

There are two differences in model 3, compared with model 2. The first is the indicator for each

coefficient. The indicator γ now associate with not only identity j, but also with time t. That is,

every coefficient in TVP-VAR now has its own indicator, unlike that β 1:T
j share the same indicator

γ j in model 2; The second, error variacne covariance matrix Σt , displays time variant, i.e. stochastic

volatility. The covariance matrix typically can be decompoed into the form of Σt = A−1
t DtDtA−1′

t ,

14
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where At is a lower triangular matrix with value of ones on the main diagonal

At =



1 0 · · · 0

a21,t 1 . . . ...
... . . . . . . 0

aM1,t · · · aM(M−1),t 1


and Dt is the diagnoal matrix with elements di,t = exp

(1
2hi,t

)
, for i = 1, . . . ,M. Here, the exponen-

tialization makes values of diagonal elements always positive. Therefore Dt is the matrix

Dt =



d1,t 0 · · · 0

0 d2,t · · · 0
... . . . . . . ...

0 · · · 0 dM,t


=



e
1
2 h1,t 0 · · · 0

0 e
1
2 h2,t · · · 0

... . . . . . . 0

0 · · · 0 e
1
2 hM,t


If we first stack the unrestricted elements of At below main diagonal by rows into a M(M−1)

2 ×1

vector as at =
[
a21,t ,a31,t ,a32,t , . . . ,an(n−1)

]′
for n = 2, . . . ,M, and ht = [h1,t , . . . ,hM,t ]

′
, then βt , at ,

and ht follow independent random walks and the whole specification of the model in state space

form is

yt = Ztθt +A−1
t Dtυt (1.13)

βt = βt−1 +ut

at = at−1 + ςt

ht = ht−1 +ηt

where υt ∼ N (0, IM) and θt = Γtβt .

The random walk setting presents the advantages of focusing on permanent shifts and reducing

the number of parameters in the estimation procedure.
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The innovations in the three state equations are


ut

ςt

ηt

∼ i.i.dN


Q 0 0

0 S 0

0 0 W


where S can be block diagonal (Primiceri, 2005) or full matrix (De Wind and Gambetti, 2014).4

As for the sampling process for this model, details like Kalman filter and smoother are dele-

gated to the technical appendix. Without loss of generality, I give the general expression for this

model. It suffices to note two points. First , l0 j and l1 j in the above two models now change to

l0 jt and l1 jt due to that the indicators γ j,t have been assigned to every coefficient in the TVP model

over j = 1, . . . ,KM and t = 1, . . . ,T . The conditional likelihood (approximate to) becomes:

l0 js = π0 js exp

{
−1

2

[
T

∑
t 6=s

(yt−Ztθt)
′
Σ
−1
t (yt−Ztθt)+(ys−Zsθ

?
s )
′
Σ
−1
s (ys−Zsθ

?
s )

]}

l1 js =
(
1−π0 js

)
exp

{
−1

2

[
T

∑
t 6=s

(yt−Ztθt)
′
Σ
−1
t (yt−Ztθt)+(ys−Zsθ

??
s )′Σ−1

s (ys−Zsθ
??
s )

]}

where θ ?
s is defined to be equal to θs = Γsβs, but θ js is equal to β j,s, i.e. the corresponding indicator

is γ j,s = 1 for s = 1, . . . ,T and for j = 1, . . . ,KM; Similarly, θ ??
s is when θ j,s is zero in the case

of γ j,s = 0 for s = 1, . . . ,T and for j = 1, . . . ,KM. Then the probability for indicator γ j,s = 1 in

Bernoulli drawing is π̄ j,s =
l0 js

l0 js+l1 js
. Note that the identity j and the time s are both randomly

picked up.5 Second, it is about the prior setting. Generally, there are two choices. Usually, the

priors on the time-varying parameters are:

β ∼ N
(
0,4Inβ

)
4De Wind and Gambetti (2014) prove that standard Kalman filter can still be used in the second state space model

for at instead of equation by equation causing block diagonal in S as in Primiceri (2005).
5An efficient estimation is developed in appendix following Chan and Jeliazkov (2009).
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l ∼ N (0,4Inl)

h∼ N (0,4Inh)

The subscript presents dimensions of each parameter. The priors on their error covariacne are:

Q∼ IW
(

1+nβ ,
(
(kQ)

2 (1+nβ

)
Inβ

))

S∼ IW
(

1+nl,
(
(kS)

2 (1+nl) Inl

))

W ∼ IW
(

1+nh,
(
(kW )2 (1+nh) Inh

))
where the hyperparamets are set to kQ = 0.01, kS = 0.1, kW = 0.01. One can also construct the

priors using a training sample (Primiceri, 2005). In particular, assume that θ̂ols and V
(
θ̂ols
)

are the

mean and variance respectively of the OLS estimate of Θ = (β , l,h) based on a VAR with constant

parameters using an initial training sample.6 Then the priors can be written as

β ∼ N (βols,4V (βols))

l ∼ N (lols,4V (lols))

h∼ N (hols,4V (hols))

and errors of covariance matrices are
6The priors can also be constructed via Bayesian estimation with noninformative priors.
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Q∼ IW
(

1+nβ ,
(
(kQ)

2 (1+nβ

)
V (βols)

))

S∼ IW
(

1+nl,
(
(kS)

2 (1+nl)V (lols)
))

W ∼ IW
(

1+nh,
(
(kW )2 (1+nh)V (hols)

))
Other notations are the same as above.

One thing should be mentioned again is that the model 3 presented here is the general case.

This means that modification or restriction can be applied to the general case. If the investigation

of parameter significance via γ j,t in model 3 is restricted to γ j and without stochastic volatility, then

model 3 is reduced to model 2. If further shutting off time variations on coefficients, it is model 1.

On the other hand, as we discussed stochastic search method is associated with mixture models,

the possible choices will become proliferative when the target model involves many coefficients,

especially in TVP models (over identity and over time). This will give rise to great computational

burden. Therefore, in order to reduce the burden, an indicator that controls for a set of coefficients

could be used instead of one for one. Actually, the model 2 has used the idea that each indicator

γ j corresponds to β j over the whole period, namely β 1:T
j . I call it block checking. The property

of indicators over each time and each identity in model 3 makes the investigation of any single

coefficient (theoretically) possible if pursuing the best model, but causes dramatically increased

computational cost in practice such that sometimes the estimation is infeasible. This is single

checking. Hence, efficient estimation of stochastic variable selection model is required. I will

discuss it in the next section.
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1.3 Bayesian estimation

In this section, we focus on two points that are important for estimation and numerical computation.

One is on stochastic volatility; The other is on stochastic variable selection.

1.3.1 Stochastic volatility

Stochastic volatility is a method modeling dynamic process for error term. Once stochastic volatil-

ity (SV afterwards) is used, generally, the econometric model involves a nonlinear or/and non-

gaussian state space part. Jacquier, Polson and Rossi (1994) propose to, based on Carlin et

al.(1992), use Metropolis step via a single move to draw stochastic volatility; here, we follows

Primiceri (2005), using mixture normal distribution to approximate irregular distribution (specifi-

cally, log
(
x2 (1)

)
), suggested by Kim, Shephard and Chib (1998).

The method involves two steps. Firstly, we draw sT from f
(
sT |yT ,Ξ,hT), where sT demon-

strate which normal is chosen among mixture normal distributions each period; yT is all the obser-

vation from y1 to yT , the same for log volatility states hT and Ξ represents other parameters and

hyperparameters. This conditional posterior is discrete distribution with seven points or ten points

as support, see Kim et al. (1998) for seven normal distributons and Omori et al. (2007) further for

ten, respectively; Secondly, draw hT from f
(
hT |yT ,Ξ,sT) given all s1 to sT from previous step.

This step is very important, as it transforms non-gaussian to a given gaussian based on identity

st each period. Hence, (nonlinear) non-gaussian state space model has been ‘cut’ into linear and

gaussian state space model each period and naturally, multi-move Gibbs sampling of Carter and

Kohn (1994) can be used, which makes chain mix well quickly and therefore reduce computational

time, as opposed to single move of Jacquier et al. (1994).7

Details on this SV approximation method can be found in appendix. Some issues such as why

draw identity sT as first step and comparison with other methods dealing with SV, reader of interest

are referred to Del Negro and Primiceri (2013), who confirm that performance of this method is

7In Chapter 2, the single move of Jacquier et al. (1994) is used for nonliner state space model.
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quite good and quantitatively same as the results of methods exactly modeling SV.

1.3.2 Stochastic selection

In section 2, we have given the mechanism of stochastic selection (SS hereafter) in (TVP) VAR

models and sketch the steps how to draw posteriors from full conditional distributions. In this

subsection, we focus on implementation of this stochastic selection in computation, especially for

model 3.

As we discussed in model 3, in section 2, compared with model 1 and model 2, all models

share the essentially same rationale for SS, but computation burden dramatically increases from

model 1 to model 3. Take model 3 for example. After incorporating SV and indicator for each and

every coefficient (over identity and over time) in the TVP-VAR model, the model becomes very

complicated though it allows for all possibilities. Considering a small TVP-VAR, typically with

three endogenous variables and only two lags – usually used in monetary VAR and requiring more

endogenous variables and lags such as oil analyses in Baumeiser and Peersman (2010) – and with

sample period usually covering around T = 150 quarterly data set, we need to compute 2∧(21∗150)

models only for stochastic selection part, not including SV, for just one iteration in the Bayesian

estimation circle.

To make the implementation of SS feasible, two ways can be used. One is block checking,

namely, the selection is based on a set of variables rather than single variable such as model 2.

Apparently, this method can reduce the number of candidate models, but with the concern of

missing potential better choices. Single checking is required if the best model is preferred in some

context. This suggests the second way – an efficient computational method that is prepared for the

general single checking. We use the efficient simulation method of Chan and Jeliazkov (2009).

The basic idea is that we nest potential iterations in each Bayesian circle into a quiet large and

sparse matrix to reduce number of iterations and therefore to speed up computation.

For example, we can construct large sparse matrices for a linear normal state space model with-

out using typical steps of Kalman forward and backward recursion and directly obtain a draw of
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β 1:T = [β ′1, . . . ,β
′
t , · · ·β ′T ]

′ at a time from a posterior conditional distribution. Thus it is the trans-

formation from conventional estimation of TVP-VAR to estimation of constant parameter VAR via

large and sparse matrices. On the other hand for SS portion, we also construct large sparse matrix

for calculating conditional likelihood for model selection instead of iterating over whole time pe-

riod. That is, corresponding to the draw of β 1:T , a large diagonal matrix Γ = Blkdiag
(
{Γt}T

t=1

)
is used where Γt = diag

(
[γ1,t , . . . ,γMK,t ]

′). After this improvement of implementation in compu-

tation, we find we can cut off two thirds of time originally used for not doing this due to taking the

advantage of matrix computation faster than iteration and large sparse matrix actually accounting

for small space to save. For details, please refer to appendix for this chapter.

1.3.3 Exercise

Why we need to use stochastic variable selection models to do empirical analysis? Make the

models parsimonious and close to reality. Here, I use an artificial data set to show this advantage

of this approach by a simple exercise. For simplicity, I generate a 5 variable VAR with only T = 50

time series observations, one lag and no constant. The unrestricted OLS estimates perform poorly,

while variable selection gives better estimates. This is because we restrict irrelevant variables, and

then there are more degrees of freedom to estimate the parameters on the relevant variables.

Suppose that the coefficient matrix in the version of Kadiyala and Karlsson (1997) mentioned

above is an identity matrix and that error covariance matrix is randomly chosen only positive

definite for sure. Initial data y1 is from a standard uniform distribution. Let’s look at table 1.1.

The first column contains posterior probatility in mean when γ j = 1, namely, the probability of

coefficient β j in the VAR(1) model. Posterior mean of β j is in column 2. Column 3 contains

coefficients estimated by ordinary least square method (OLS). The true parameters are in the last

column. The prior probability π0 j for each parameter β j is set to 0.5. That’s because one has

no idea of including or excluding each parameter, say, perhaps in or out in the model half by half.

Hence, Korobilis (2013b) regards it as ‘noninformative prior’ and criteria probability. Column 3, in

contrast to last column – true values of coefficients – demonstrates that the estimation performance
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is bad and many inefficient variables contained in. Column 1 gives posterior probability for each

coefficient that match well with true value: when true value is 1, all posterior probability is 1;

while true value is 0, almost all the corresponding posterior probabilities are extremely low, seldom

above 5% contrast with 50% as criteria. The corresponding mean of each coefficient in column 2,

compared with column 3, generally, is more close to true value because the indicators give more

information to coefficients that exist. Obviously, the exercise shows great benefit on Bayesian VAR

regression.

1.4 Monetary policy in stochastic selection models

1.4.1 Data description

I use a quaterly U.S. data set on the inflation rate, unemployment rate and the short interest rate.

Inflation is the annual percentage change in a chain-weighted GDP price index; unemployment

rate is seasonlly adjusted civilian unemployment, all workers over age 16; short rate is 3−month

Treasury bill rate. They are denoted by yt = (πt ,ut ,rt)
′
collected in a vector. The sample runs

from 1953Q1 to 2006Q3. We choose this sample period due to two reasons. One is that this

time span, covering Great Inflation, Monetary Targeting, and Great Moderation, is widely used in

the monetary policy literature, especially for those focusing on issue of monetary policy regimes

switching during this possible policy change time period. Therefore it is nature for us to choose

the same span to compare our findings and results with previous ones. The other is that after recent

global economic and financial crisis of 2008, though the Great Recession has gone but still in the

process of slow recovery, the Fed has switched to and continued near zero rate policy until full

recovery, which apparently an abrupt change in monetary instrument.

These three variables we choose in our analysis are commonly used in New Keynesian VAR

literature. They are simple but representative. Examples of papers which use these, or similar

variables, include Cogley and Sargent (2001, 2005), Koop, Leon-Gonzalez and Strachan (2009)

and Primiceri (2005).
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Restrict Bayesian OLS True
1 0.984388 0.668605 1

0.025 -0.02115 -0.26653 0
0.0268 0.017219 -0.3257 0
0.348 0.063925 -0.3257 0
0.0288 0.01453 -0.1153 0
0.0925 -0.27718 -0.40878 0

1 0.791886 0.671789 1
0.028 0.015616 0.024751 0
0.0412 -0.03159 -0.03933 0
0.0326 0.042137 -0.07599 0
0.0158 0.05577 0.069901 0
0.017 0.073861 0.117344 0

1 0.787047 0.753396 1
0.212 -0.00324 -0.0383 0
0.0166 -0.03478 0.116155 0
0.163 -0.00202 0.09937 0
0.0474 0.033059 -0.02569 0
0.058 -0.02369 -0.00919 0

1 0.8962 0.92836 1
0.019 0.091339 -0.11235 0
0.0564 0.098384 0.350941 0
0.027 -0.02018 0.24663 0
0.0336 -0.01635 0.340174 0
0.0176 0.049076 0.187969 0

1 0.856714 0.90082 1

Table 1.1: Exercise result

Notes: The first column contains posterior probability in mean when γ j = 1, namely, the probability
of coefficient β j in the VAR(1) model; The second column has posterior mean of β j; The third
column is OLS estimate of β j; The fourth column is for true value of β j that is used to construct
the artificial data.
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1.4.2 Lags and significance

In this subsection, I discuss this issue focusing on Model 1, namely static SVS-BVAR. Though its

simplicity, it can specify this issue very well and shed light on the other two models.

Due to the property of stochastic selection models we discussed in section 2, this class of

models itself is able to freely choose what coefficients enter or exit the system. In this way, if

arbitrarily choose observables and lags, letting the data speak, in a Bayesian framework, one can

finally find the best model associated with its coefficient significance and lags.

I first use model 1 (SVS-BVAR) to estimate the full range of the data set. Inflation, unem-

ployment rate and 3-month treasury bill rate are typically used in small scale monetary VAR. Of

course, more variables such as real GDP growth, money base, exchange rate and so on can also

be nested into models and let the data decide if they are significantly interact each other and over

time following the idea. Before this paper, to my best knowledge, Canova and Ganbetti (2009),

Cogley and Sargent (2001, 2005), Koop et al. (2009) and Primiceri (2005) all directly give two

lags without any check. The advantage of SVS model is that we can find the significant variables

meanwhile the best lag. I first set the uninformative prior probability π0 j = 0.5, meaning the fair

change of including or exluding the corresponding coefficient. The possible number of lags, say

four lags, needs to be finally checked by the data.

In Table 1.2, the second column contains posterior probabilities of lagged coefficients for infla-

tion. The third column is for unemployment, the last is for interest rate. The bold font probabilities

are much higher than 50%, which implies the corresponding lagged variables should stay in this

VAR model. We can also find after 3 lags, no significant dependents left. It says that the right lag

may be 3. But a question arises from the prior choice. In table 1.2, I choose 0.5 as a prior for in-

dicators, which perhaps lower the probability of including some variables, making some variables

left the table that might stay in. To avoid this possibility, I gradually increase the prior from 0.5

to 0.75 by an increase of 5% step by step. Except that the short rate of lag 3 in policy equation

some time not very significant but very close to criteria probability, other variables from table 1.3

to table 1.7 are very stable. Then, the second question comes out that I set prior for each variable
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π0 j = 0.5 Lag = 4
πt ut rt

c 0.171889 0.9844 0.090889
πt−1 1 0.017244 0.994911
ut−1 0.072044 1 0.984111
rt−1 0.007156 0.016889 1
πt−2 1 0.018111 0.7271556
ut−2 0.034044 1 0.975822
rt−2 0.006844 0.062489 0.032867
πt−3 0.030333 0.015756 0.111333
ut−3 0.042244 0.035956 0.083067
rt−3 0.003689 0.86116 0.692844
πt−4 0.014622 0.054178 0.173044
ut−4 0.026467 0.0164 0.113711
rt−4 0.005711 0.054644 0.035489

Table 1.2: Lag check1

the same every time. This may not be the case in reality. Therefore, I use standard uniform dis-

tribution for each prior. Table 1.8 shows the result is the same only with that interest rate of lag

3 for unemployment equation disappears. Actually, uniform distribution probably potentially can

lower or raise prior for some variables and this may make the result controversial. Hence, relatively

speaking prior of 50% is an appropriate choice. We also find that the third lag of interest rate is

very isolated and this may be caused by more lags I choose. When lags are reduced to three, see

table 1.9, significant variables are the same as previous results within four lags. When reduced to

lag of two, the result is the same as those with more lags. Altogether, coefficients of significance

found in table 1.2 is not prior sensitive and coefficients on fourth lag always keep insignificant.

Now, I can say, lag of 3 is a good choice for the static VAR model using this data set.

Following the same spirit, we can also find the significance and therefore choose the best lags.

Table 1.11 lists the significance of coefficients for model 2 (SVS-Partial-TVP-VAR).8 Note that

value in each cell corresponds to the significance of the coefficients over the whole sample pe-

riod as a whole, i.e., β 1:T
j , while Fig 1.14 to Fig 1.16 for model 3 (SVS-Full-TVP-VAR) gives the

significance of each coefficient in each equation, β j,t , for j = 1, . . . ,KM and for t = 1, . . . ,T , indi-

8Acutully for model 2, we find three lags are best choice. However, for convenience and consistence of comparison
of results in the related literature, we choose two lags usually seen for quarterly monetary small VAR.
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π0 j = 0.55
πt ut rt

c 0.273067 0.98576 0.120022
πt−1 1 0.024378 0.99062
ut−1 0.209089 1 0.78644
rt−1 0.005044 0.0668 1
πt−2 1 0.041689 0.78473
ut−2 0.163756 1 0.78473
rt−2 0.007133 0.040356 0.046889
πt−3 0.0396 0.045089 0.180644
ut−3 0.039133 0.055067 0.083978
rt−3 0.004489 0.817 0.547133
πt−4 0.014733 0.057511 0.152489
ut−4 0.030556 0.0406 0.122422
rt−4 0.004244 0.07311 0.037556

Table 1.3: Lag check2

π0 j = 0.6
πt ut rt

c 0.299644 0.99658 0.128133
πt−1 1 0.017156 0.98989
ut−1 0.202867 1 0.951
rt−1 0.009511 0.049978 1
πt−2 1 0.0162 0.7812
ut−2 0.086553 0.9672 0.9286
rt−2 0.015333 0.0338 0.046511
πt−3 0.046911 0.067889 0.180244
ut−3 0.089156 0.094422 0.112422
rt−3 0.0096 0.83849 0.78979
πt−4 0.02644 0.0746 0.217378
ut−4 0.053822 0.030222 0.140511
rt−4 0.011711 0.071578 0.040956

Table 1.4: Lag check3
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π0 j = 0.65
πt ut rt

c 0.4738 0.99347 0.160111
πt−1 1 0.022978 0.98916
ut−1 0.417044 1 0.9962
rt−1 0.010889 0.073869 1
πt−2 1 0.034956 0.79469
ut−2 0.241578 1 0.9668
rt−2 0.013289 0.068956 0.058978
πt−3 0.057911 0.043311 0.212667
ut−3 0.098689 0.074711 0.198711
rt−3 0.007244 0.8608 0.68487
πt−4 0.027556 0.042622 0.204711
ut−4 0.097222 0.037644 0.2132
rt−4 0.008511 0.068667 0.073844

Table 1.5: Lag check4

π0 j = 0.7
πt ut rt

c 0.674244 0.98831 0.220867
πt−1 1 0.03444 0.97342
ut−1 0.72776 1 0.78644
rt−1 0.010711 0.080044 1
πt−2 1 0.038022 0.7376
ut−2 0.504911 1 0.92064
rt−2 0.010889 0.104978 0.07422
πt−3 0.052822 0.041067 0.222467
ut−3 0.149333 0.061311 0.210133
rt−3 0.008222 0.88473 0.74669
πt−4 0.035867 0.040178 0.230178
ut−4 0.181156 0.030689 0.287578
rt−4 0.009378 0.0838 0.060111

Table 1.6: Lag check5
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π0 j = 0.75
πt ut rt

c 0.676533 0.99118 0.238756
πt−1 1 0.0366 0.99551
ut−1 0.6782 1 0.98373
rt−1 0.018956 0.101644 1
πt−2 1 0.54556 0.78229
ut−2 0.344467 0.9658 0.9364
rt−2 0.014333 0.085689 0.105933
πt−3 0.067822 0.063178 0.344244
ut−3 0.241533 0.126867 0.250044
rt−3 0.0118 0.85351 0.746289
πt−4 0.034489 0.0628 0.302933
ut−4 0.159533 0.063089 0.346
rt−4 0.009822 0.092244 0.096644

Table 1.7: Lag check6

π0 j ∼U (0,1)
πt ut rt

c 0.020733 0.99653 0.013222
πt−1 1 0.009 0.96131
ut−1 0.037489 1 0.96469
rt−1 0.000956 0.023689 1
πt−2 1 0.062667 0.63662
ut−2 0.035689 0.94331 0.84693
rt−2 0.014289 0.111756 0.000778
πt−3 0.000956 0.036289 0.349956
ut−3 0.001578 0.9794 0.174378
rt−3 0.002978 0.151089 0.8954
πt−4 0.025911 0.529983 0.424889
ut−4 0.6608 0.279311 0.117289
rt−4 0.001289 0.263667 0.059067

Table 1.8: Lag check7
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π0 j = 0.5
πt ut rt

c 0.1501 0.999 0.0994
πt−1 1 0.0099 0.9816
ut−1 0.0094 1 1
rt−1 0.0031 0.1093 1
πt−2 1 0.0074 0.7273
ut−2 0.0082 1 1
rt−2 0.0042 0.116 0.0323
πt−3 0.0314 0.0105 0.2294
ut−3 0.0082 0.0145 0.0528
rt−3 0.0022 0.8137 0.8235

Table 1.9: Lag check8

π0 j = 0.5
πt ut rt

c 0.1152 0.9789 0.0984
πt−1 1 0.1765 0.9918
ut−1 0.0124 1 1
rt−1 0.0023 0.1378 1
πt−2 1 0.149 0.6464
ut−2 0.0096 1 1
rt−2 0.0062 0.5454 0.0872

Table 1.10: Lag check9
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π0 j = 0.5
πt ut rt

ct 1 0.4620 0.9550
πt−1 1 0.2170 0.9460
ut−1 1 1 1
rt−1 0.3250 0.0370 1
πt−2 1 0.8810 0.7050
ut−2 1 1 1
rt−2 0.3430 0 1

Table 1.11: Lags in model 2

vidually. We shall come back to them in the next subsections when discussing possible structrual

changes in agents’ behavior and monetary policy implementation.

1.4.3 Impulse responses

Next, let’s check impulse responses. First, we compare impulse responses of unrestriced Bayesian

VAR with static SVS-BVAR of model 1. The unrestricted Bayesian VAR is equivalent to setting

prior that all parameters are in the model with probability of one in terms of SVS-BVAR. All

parameters in SVS-BVAR are set with prior probability of 50%.

Recursive identification of exogenous monetary policy shocks is used in which short rate is

placed in the last order such that inflation and unemployment rate can impact policy immediately

while policy rate affect them with one lag. The size of monetary shock is normalized to one

percentage.

The result shows that in the first several periods, for unrestriced model, responses of unem-

ployment rate get down, which contracts with economic theory and unsurprisingly, typically seen

in small scale monetary VAR literature. However, when stochastic selection is imposed, it im-

proves completely, getting rise directly after lags of 3 periods due to the inffluence of irrelevant

variables alleviated by stochastic selection. Interest rate response to inflation in unrestricted model

is modest, after around 5 periods starting above 1, then gradually get down to zero around the 21st

period. Responses of interest rate in model with stochastic selection, are quite strong, until after

24 periods, it still stays close to 2 at median, which means in a long run respect Taylor rule is very
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powerful that’s different with the result for unrestricted model.9

Now let’s look at impulse responses (IRs hereafter) of variables to monetary policy shocks in

model 2 and model 3. Both models are imposed with multivariate stochastic volatility in order to

jointly analyze systematic and non-systematic changes. Time variation of coefficients on regressors

and stochastic volatility have extended the IRs with dynamic property over time as opposed to static

model 1.

We randomly choose three period 1975 Q1, 1981 Q3 and 1996 Q1 to represent three chairman-

ships respectively. Figure 1.2, corresponding to model 3, shows the impulse response functions

of inflation, unemployment and three month short rate to one percentage monetary policy shock,

with solid line representing median, dashed lines 16th and 84th percentile respectively of posterior

IR distribution. All the responses perfectly satisfy economic theory. There are no price puzzle typ-

ically seen in a small scale monetary VAR which can be weakened after adding forward looking

prices or using large data set (Bernanke et al., 2005); Unemployment rates also increase quickly

under contracting monetary policy. All the responses under recursive identification are in line with

that under agnostic identification of sign restriction of Uhlig (2005). If comparing the same re-

sponses with that under model 2, in Figure 1.1, and unrestricted TVP-VAR, we find that there are

‘price puzzle’ and ‘unemployment abnormal’, though no longer significant in model 2 – the sim-

ilar improvement in rich data set model such as factor augmented models, but seldom completely

diminishing. This means that even though in a small scale VAR model, however, with coefficient

restrictions, we can still obtain theory consistent results that are difficult without restriction. On the

other hand, we also find error bands of IRs for model 3 in Figure 1.2 have substantially narrowed as

opposed to those of IRs for model 2 in Figure 1.1. A reasonable explanation for this is that model

3 has restrictions both over identity and time, while model 2 not allowed for time dimension.

9Since the static typical small scale VAR is widely analysed, we do not provide figues for the save of space.
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1.4.4 Systematic or exogenous change

An important thing we need to consider in monetary policy issue is that there might be structural

changes in monetary policy with different chairmanships of Burns, Volcker and Greenspan, though

some believe, some not. Related literature has given large number of evidence about this issue,

though until now such dispute still exists there in theoretical and empirical study and this one

sometimes more or less associated with other topics like sources or causes of the Great Inflation

or the Great Moderation. One thing we need to confirm is that generally there are two periods

suitable for monetary policy test. One is from 1963 Q1 to 1973 Q3 corresponding approximately

to the period of rising inflation before the Volcker chairmanship. The period 1982 Q4 to 2006

Q3 corresponds to the Volcker and Greenspan chairmanships excluding the years of Monetary

Targeting, for which the Taylor rule might not represent an appropriate description of systematic

monetary policy (see, for instance, Hanson, 2006; Sims and Zha, 2006).

Recently, time varying parameter VAR with stochastic volatility (see, among many other, Cog-

ley and Sargent, 2005; Cogley, Primiceri, and Sargent, 2010; Koop, Leon-Gonzalez, and Strachan,

2009; Koop and Korobilis, 2013) has been widely used in empirical analysis in business cycle, pol-

icy change, forecast and so on, because this kind of models can capture time variation properties

of coefficient and volatility that probably reflect structural changes in a gradual manner rather than

abrupt one like Markov regime switch model with probability or threshold regime switch model

when threshold variable is above or below threshold value. On the other hand, SV can investigate

some potential exogenous or non-systematic changes during sample period that is not capable for

model without SV. However, these TVP models all associate with parameter proliferation problem

due to the extension of parameters to time dimension even if in a small scale VAR, which might

give incorrect properties and possible wrong inferences. Therefore, TVP-VAR with stochastic

variable selection is a good tool to analyze such problems relevant with systematic changes via

time varying coefficients and non-systematic changes via stochastic volatility.
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1.4.4.1 Agents bahavior to monetary shocks

We investigate whether structure has changed in the agents’ behavior to monetary policy shocks.

The magnitude of monetary policy is standardized to one percentage in each period. We compare

the difference among these three periods mentioned above.

Intuitively, in Figure 1.1 and Figure 1.2, IRs of inflation and unemployment did not seem

change much. However, we need a way to precisely estimate the difference. Following Primiceri

(2005) and others, we compute the difference of IRs between every two periods mutually among

the three periods in every iteration after burin-in during Bayesian estimation and therefore obtain

the posterior distribution of the IR difference .

Figure 1.3 and Figure 1.4, for model 3, show that there are no significant differences between

these periods no matter for response of inflation or unemployment, because they are all insignifi-

cant with zero line. This means that economic agents have not altered their behavior and hence no

structure changes in the agents in response to non systematic monetary policy shocks. The same

results can also be found in model 2, see Figure 1.5 and Figure 1.6, and in unrestricted TVP-VAR,

but with larger error band compared with model 3 for the reason we have discussed before.10

Since arbitrarily picking up three periods, we can not guarantee that the ‘insignificant change

in agent behavior’ always hold during the whole sample period. The 3-D impulse responses of

inflation and unemployment rate over the whole period respectively, in Figure 1.8 for model 3, are

given, showing that it is reasonable to believe that economic agents keep the same way in decision

making. Figure 1.7 for model 2 also support this conclusion with impuse responses appearing

more smooth.

1.4.4.2 Systematic monetary policy

We check if the implementation of monetary policy has changed. Long run response of policy

rate to inflation shocks and unemployment shocks is used to represent monetary policy stance.11

10For saving space, we do not give figures for unrestricted TVP-VAR from which they deliver the results in line
with the literature.

11In standard New Keynesian DSGE models, the monetary policy rule follows this similar type:
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Figure 1.1: IRs for model 2

Notes: The model 2 is SVS-Partial-TVP-VAR with SV. The first column plots impulse responses
of inflation to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The second column
plots impulse responses of unemployment rate to monetary policy shocks in 1975 Q1, 1981 Q3
and 1996 Q1. The third column plots impulse responses of interst rate to monetary policy shocks
in 1975 Q1, 1981 Q3 and 1996 Q1. Solid line represents posterior median of impluse response
distribution with dashed lines of 16th percentile and 84th percentile, respectively.
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Figure 1.2: IRs for model 3

Notes: The model 3 is SVS-Full-TVP-VAR with SV. The first column plots impulse responses of
inflation to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The second column plots
impulse responses of unemployment rate to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996
Q1. The third column plots impulse responses of interst rate to monetary policy shocks in 1975
Q1, 1981 Q3 and 1996 Q1. Solid line represents posterior median of impluse response distribution
with dashed lines of 16th percentile and 84th percentile, respectively.
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Figure 1.3: IR-inflation-comparison for model 3

Notes: The model 3 is SVS-Full-TVP-VAR with SV. The upper left panel plots median impulse
responses of inflation to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remain-
ing three panels plot difference of responses between every two periods mutually, with solid line
representing median and dashed lines for 16th percentile and 84th percentile respectively.
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Figure 1.4: IRs-unemployment rate-comparison for model 3

Notes: The model 3 is SVS-Full-TVP-VAR with SV. The upper left panel plots median impulse
responses of unemployment rate to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1.
The remaining three panels plot difference of responses between every two periods mutually, with
solid line representing median and dashed lines for 16th percentile and 84th percentile respectively.
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Figure 1.5: IRs-inflation-comparison for model 2

Notes: The model 2 is SVS-Partial-TVP-VAR with SV. The upper left panel plots median impulse
responses of inflation to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remain-
ing three panels plot difference of responses between every two periods mutually, with solid line
representing median and dashed lines for 16th percentile and 84th percentile respectively.
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Figure 1.6: IRs-unemployment rate-comparison for model 2

Notes: The model 2 is SVS-Partial-TVP-VAR with SV. The upper left panel plots median impulse
responses of unemployment rate to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1.
The remaining three panels plot difference of responses between every two periods mutually, with
solid line representing median and dashed lines for 16th percentile and 84th percentile respectively.
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Figure 1.7: 3D-IRs for model 2

Notes: The model 2 is SVS-Partial-TVP-VAR with SV. The upper panel plots median impulse
responses of inflation to monetary policy shocks over the whole sample period. The lower panel
plots median impulse responses of unemployment rate to monetary policy shocks over the whole
sample period.
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Figure 1.8: 3D-IRs for model 3

Notes: The model 3 is SVS-Full-TVP-VAR with SV. The upper panel plots median impulse re-
sponses of inflation to monetary policy shocks over the whole sample period. The lower panel
plots median impulse responses of unemployment rate to monetary policy shocks over the whole
sample period.
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Responses for 5 quarters, 10 quaters and 15 quarters are examined for policy strength.

We first look at policy response to inflation shock. In Figure 1.9, we find that around after

middle 1970s, policy sensitivity to inflation has increased after 5 quaters, 10 quaters and 15 quaters,

but not significant with a line always through the whole error band respectively. This line can be

above one or below one. Figure 1.10 have the same property, however, with very broad confidence

band. Therefore, we can only reach that there are no significant structural change in policy rule

which is consistent with Primiceri (2005) and Sims and Zha (2006).

Monetary reaction to unemployment shocks has significantly enhanced after 5 quaters and 10

quaters, but become insignificant after 15 quaters in Figure 1.11 for model 3 over the sample

period. This finding can not be captured in Figure 1.12 for model 2 as they are all not significant.

Generally speaking, we can not conclude that policy stance to unemployment has significantly

changed.

1.4.4.3 Non-systematic monetary policy shocks

The last panel of Figure 1.13 plots the dynamic process of stochastic volatility for nonsystematic

policy with narrow band for model 3. This path is well confirmed in the literature that the volatility

during era of the Great Inflation is much higher than the episode of the Great Moderation, and

the flutuation in the period of monetary targeting of chairmanship of Volk is dramatically volatile.

Together with the previous analysis, we only find volatility of exogenous shocks have changed

substantially.

1.4.4.4 An interpretation

Altogether, even though with restricted TVP-VAR via stochastic variable selection in model 2 and

model 3, We still have the almost the same conclusion that there are no significant switches in

agents’ behavior and monetary policy stance, as opposed to which, exogenous shocks have altered

strongly.

rt = ρrrt−1 +(1−ρr)(ρπ πt +ρyyt)+ εM
t where long run response ρπ and ρy represent monetary policy stance.
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Figure 1.9: Policy response to inflation for model 3

Notes: The model 3 is SVS-Full-TVP-VAR with SV. The upper left panel plots immediate im-
pulse responses of policy rate to inflation shocks over the whole sample period. The remaining
panels plot impulse responses of policy rate to inflation shocks in the 5th , 10th, and 15th period
respectively over the whole sample period.
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Figure 1.10: Policy response to inflation for model 2

Notes: The model 2 is SVS-Partial-TVP-VAR with SV. The upper left panel plots immediate
impulse responses of policy rate to inflation shocks over the whole sample period. The remaining
panels plot impulse responses of policy rate to inflation shocks in the 5th , 10th, and 15th period
respectively over the whole sample period.
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Figure 1.11: Policy response to unemployment rate for model 3

Notes: The model 3 is SVS-Full-TVP-VAR with SV. The upper left panel plots immediate impulse
responses of policy rate to unemployment rate shocks over the whole sample period. The remaining
panels plot impulse responses of policy rate to unemployment rate shocks in the 5th , 10th, and 15th

period respectively over the whole sample period.
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Figure 1.12: Policy response to unemployment rate for model 2

Notes: The model 2 is SVS-Partial-TVP-VAR with SV. The upper left panel plots immediate
impulse responses of policy rate to unemplyment rate shocks over the whole sample period. The
remaining panels plot impulse responses of policy rate to unemployment rate shocks in the 5th ,
10th, and 15th period respectively over the whole sample period.
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Figure 1.13: Volatility for each variable in model 3
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A possible reason we believe is that although restricted TVP-VAR of model 2 and model 3,

especially for model 3, have significantly improved the parameter prolification problem and re-

duced uncertainty, but this merit is not strong enough to overturn the view of stability of structures

existing both in economic agents and policy authority. The prior probability for each coefficient

in each equation is set to π0 jt = 0.5. Fig 1.14 to Fig 1.16 shows the posterior significance of each

coefficient along the sample period. Two points can be found that first, variables always react to

its own first lag with probability of one, and then become week around 50% with special case for

inflation (equation 1) where it also strongly response to its own lag 2 during some periods of the

Great Inflation and money base targeting; Second, other lags, no matter domestic or foreign, fluc-

tuate with the mild and relatively the same magnitude around half percentage. These two points

are consistent with empirical literature such as settings of shrinkage priors ( for example, the Min-

nesota prior, see Doan, Litterman and Sims, 1984, Litterman, 1986 and its extension, see Banbura,

Giannone and Reichlin, 2010, among others).

From these figures, there is no prominent jump of probability, except for their own lags, for

each coefficient in each equation over sample period. That is, every coefficient always plays almost

the same (relative) importance in this system. Structural change needs abrupt shift and keep it for

a period or gradual increase or decease to over some critical threshold point. We can not find such

style in these figures.

1.5 Robust check

Every TVP-VAR model has the nature that its latent state coefficients have to change or break

every period due to its transition equation dynamics and this change has to be smoothed because

of the backward recursion as described in Carter and Kohn (1994) in estimation after observing all

the data. Hence there is a situation in which some state variables of small variations will more or

less take over and narrow down the weight originally played by those of large variation in order

to make the estimation smooth. Under such kind of operation, Primiceri (2005) discussed this
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Figure 1.14: Posterior probability for each coefficient in policy rule
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Figure 1.15: Posterior probability of each coefficient in inflation equation
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Figure 1.16: Poterior probability of coefficient in unemployment rate equation
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concern. In this case, misleading could take place and this is potential missing in the proof via Fig

1.14 to Fig1.16 deriving from model 3 with also such kind of smoothness operation. Probably it is

one reason for Sims and Zha (2006) to choose Markov regime switch models to detect structural

changes occurring in an economy.

The above concern motivates the aim of the robust check in this section. Given that large scale

breaks have high potential to be candidates of systematic changes while non-large-breaks not,

then naturally, designing models good at being able to seize large breaks and meanwhile defense

influence from not large variations is a necessary direction. Stepping further, if we still can not

find systematic change under the large beak, it implies that it’s more impossible to infer structural

alterations in other non-large-break periods, because these non-large-breaks are more less qualified

to be considered as possible structural switches. This deletes the above concern, complements and

closes the proof that the TVP-VAR system is stable for the data set. Therefore there were no

structural changes in monetary policy and economic behavior, and exogenous shocks naturally

play the role of accounting for the empirical dynamic difference between the ‘Great Inflation’ and

the ‘Great Moderation’ .

Recently, following Bauwens, Koop, Korobilis and Rombouts (2014), Korobilis (2013b) de-

velop a TVP-VAR model involving discrete Markov process used for forecasting. We use this

model to do our robust check.

The basic idea is that the latent coefficients in this TVP model are subject to several possible

regime states which follows Markov process, meaning the regime – the corresponding coefficient

– is not necessary to move every period. The model is formulated as follows modified on the

previous TVP models:

yt = Ztθst + εt (1.14)

θst = Γβst (1.15)
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βst = βst−1 +ut (1.16)

where εt ∼N (0,R), ut ∼N (0,Q) and st ∈ [1, . . . ,M+1] is Markov process of order one with block

diagonal transition matrix of the form



p11 p12 0 · · · 0

0 p22 p23
. . . ...

... . . . . . . . . . 0

0 pMM pM,M+1

0 · · · 0 0 pM+1


This model specifies there is a break between t and t + 1, namely βst+1 6= βst due to ut 6= 0 if

only if st 6= st+1, otherwise βst+1 = βst and the state process st only goes forward and never comes

back without memory.12 This defines the new transition equation. Not every βst is time varying,

only when regime switch happens that does deserve. In other words, not always, only the limited

variations in βst uniquely correspond to several large breaks (herein M breaks) that have relatively

more importance than other non-large-breaks in the data set.

The assumption of regime switching ‘without memory’ (the block diagonal transition matrix)

seems very strong, probably not in line with empirical evidence, but it is very suitable for us to

detect large breaks – the candidates of structural changes – in posterior respect meanwhile filtering

out small variation not qualified as ‘breaks’ that however always involved in TVP models causing

potential contamination of inference. In a word, the model only paying attention to large breaks

has been already sufficient for us to find large breaks.

We priorly set two breaks, namely three regimes for U.S. sample set.13 Fig 1.17 plots the

posterior probability for each regime. It is evident that only two regimes, regime 1 and regime 2

12The ‘never comes back without memory’ is based on the idea that it is reasonable to regard it as a ‘new break’
if ut is large enough and also on compatibility of estimation after incorporating discrete Markov (regime switching)
process into TVP models for smoother part, which can be found in the appendix of Bayesian estimation of the model.

13We also tried three breaks but denied by the data.
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Figure 1.17: Posterior probability of each regime

are strongly supported by the data. For regime 3, it is zero percentage before around 2003, after that

2% significantly denied by the data. Now let’s look at the dynamic relationship between regime 1

and regime 2. Regime 1 strongly dominated with posterior probability of value one before the end

of 1980s, then after cross point around 1981, the regime 2 took the place of regime 1 dramatically

climbing up to probability near one till the end of 2006 Q2 with the trivial role of regime 3 of

extremely low level support. The information showing up in Fig 1.17 is not surprising, conforming

with the literature that the year of 1981, among monetary targeting project in the chairmanship of

Volcker, is the threshold point that divides the sample into two regimes. The property of TVP-VAR

with regime switching that is able to pick up large breaks clearly catch the significant switch of

monetary policy.14

14Note that the TVP-VAR with regime switch in this paper does not belong to the category of conventional state
space models with regime switching in which regime switch occurs on parameters. See chapter 10 of Kim and Nelson
(1999).
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Has the economy changed before and after monetary targeting policy in the aim to attacking

high inflation? Fig 1.18 and Fig 1.19 give the ‘NO’ answer. Take regime 3 into account, though

it is trivial, to give a full piture. Differences among these three regimes for reactions of inflation

and unemployment to monetary policy shocks are not significant with zero, which is in line with

findings from Model 2 and Model 3. Monetary policy stance is also investigated. In Fig 1.20,

in response to inflation shocks, the Fed’s reaction had no significant differences during every two

regimes, no matter in short run or long run. The same result is also found in response to unem-

ployment shocks in Fig 1.21. Altogether, there were no systematic changes in Monetary policy

and agents’ behavior.

Since in large breaks systematic changes are not found, the concern in model 2 and model 3

about possible influence of small variation on large variation is neglectable.

1.6 Concluding remarks

In this paper, we present models for dealing with the problem of parameter proliferation – as-

sociated with potential incorrect inferences – in VAR models (under usual limited data access).

They are static SVS-BVAR (Model 1), SVS-Partial-TVP-VAR (Model 2) and SVS-Full-TVP-VAR

(Model 3). For the latter two models, I incorporate multivariate SV so as to investigate systematic

and non-systematic changes jointly. Actually, the three models are consistent each other; Model

1 and Model 2 are special cases of Model 3 after relaxing some restrictions, as we discussed in

section 2.

With these models and U.S. quarterly data, we analyzed whether there were systematic switches

in U.S monetary stance and economic agents’ behavior. After investigating long run responses of

policy rate to inflation and unemployment shocks, respectively, we find that there were insignif-

icant changes in systematic monetary policy along the whole sample period. We also evaluated

agents’ behavior examined by monetary policy shocks in three arbitrary periods, then extended to

all the sample period and still no significant responses were found. We payed more attention on
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Figure 1.18: IRs of inflation and their difference between different regimes

Notes: The upper left panel plots median impulse responses of inflation to monetary policy shocks
in regime 1, regime 2, and regime 3. The remaining three panels plot difference of responses
between every two regimes mutually, with solid line representing median and dashed lines for 16th

percentile and 84th percentile respectively.
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Figure 1.19: IRs of unemployment rate and their difference between different regimes

Notes: The upper left panel plots median impulse responses of unemployment rate to monetary
policy shocks in regime 1, regime 2, and regime 3. The remaining three panels plot difference of
responses between every two regimes mutually, with solid line representing median and dashed
lines for 16th percentile and 84th percentile respectively.
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Figure 1.20: IRs of interest rate to inflation shocks
Notes: The upper left panel plots median impulse responses of interest rate to inflation shocks
in regime 1, regime 2, and regime 3. The remaining three panels plot difference of responses
between every two regimes mutually, with solid line representing median and dashed lines for 16th

percentile and 84th percentile respectively.
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Figure 1.21: IRs of interest rate to unemployment shocks

Notes: The upper left panel plots median impulse responses of interest rate to unemployment
shocks in regime 1, regime 2, and regime 3. The remaining three panels plot difference of responses
between every two regimes mutually, with solid line representing median and dashed lines for 16th

percentile and 84th percentile respectively.
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model 2 and model 3 due to their time variation property in tracking dynamic process. With the

model 2 of block checking and model 3 of single checking together, in case of possible missing

and misleading in model 2, We find insignificance alterations in behavior of both economic agents

and policy authority.

One thing worth noting is that figures for model 3 indeed have seized some changes in the

policy implementation with obviously narrow error band as opposed to model 2, however, these

benefits resulting from stochastic selection controlling significance of each variable along time

period have not overturn the findings in model 2. Posterior probability for every coefficient over

time dimension delivers the plausible reason that except for its own lag of one, relative importance

of interaction among variables over time is generally stable that can be found from Fig 1.14 to Fig

1.16.

The concern that large variation can be weakened by small variation due to smoothness op-

eration in TVP-VAR estimation gives rise to sensitivity check via a modified TVP-VAR model

involved with discrete Markov process. We find the concern can be ignored. Hence it is believable

to conclude that since the system is indeed stable by statistical proof, the empirical dynamic change

before and after Volcker monetary targeting can only be attributed to exogenous shocks, not deter-

mined by the system. This conclusion consistent with Primiceri (2005) and Sims and Zha (2006).

On the other hand, the stability, namely the equality of relative importance of each variable in the

typical small scale monetary TVP-VAR system is not sensitive to the choice of models of parsimo-

nious restrictions, making the concern about over parameterization and smoothness typically seen

in TVP-VAR system neglectable.

In this sense, the value of the paper lies not only in examining and confirming one of views

in the literature using other different models, but also giving the underlying reason as well as

statistical proof why their view can still hold even though with more enriched models such as

stochastic variable selection models presented in this paper.

These models can apply to other topics like fiscal policy change, financial market fluctuation

and so on that are left for our future research.
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Appendix

A. The basic Kalman filter and state smoother

Consider a typical state space model, ignoring the influence of exogenous variables15:

yt = Xtβt +ut (1.17)

βt = Fβt−1 + εt (1.18)

where yt is an n× 1 observables, Xt is a n× k matrix of regressors, βt is a k× 1 unobserable

vector state following the dynamic process in (1.18); ut ∼ N (0,Rt) and εt ∼ N (0,Q) as well as

cov(ut ,εs) = 0 for ∀t and ∀s. Usually, equation (1.17) is called measurement or observation equa-

tion and (1.18) the transition or evolution or state equation.

Denote βt|s and Vt|s conditional mean and conditional variance of βt based on information set

up to and including t, respectively. The forward filter, with initial moments β0|0 and V0|0, consists

of two steps:

Prediction

βt|t−1 = Fβt−1|t−1

Vt|t−1 = FVt−1|t−1F
′
+Q

Updating

Kt =Vt|t−1X
′
t

(
XtVt|t−1X

′
t +Rt

)−1

βt|t = βt|t−1 +Kt
(
yt−Xtβt|t−1

)
Vt|t =Vt|t−1−KtXtVt|t−1

15Including exogenous variables in measurement equation and/or transition equation does not affect the derivation
of Kalman filter and state smoother.
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this process proceeds from t = 0 to t = T . At the conclusion of the forward recursion, draw βT

from N
(
βT |T ,VT |T

)
.

With βT regarded as observation, backward smoother starts from t = T −1 to t = 1 with

βt|t+1 = βt|t +Vt|tF
′V−1

t+1|t
(
βt+1−Fβt|t

)
Vt|t+1 =Vt|t−Vt|tF

′V−1
t|t+1FVt|t

then βt is drawn from posterior N
(
βt|t+1,Vt|t+1

)
after observing all the data.
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B. Modified Kalman filter and state smoother with breaks

Consider a modified state space model

yt = Xtβst +ut

βst = βst−1 + εt

in which setting, the time varying coefficients βt depend on latent state st that follows a discrete

Markov process. For details of the model specification, please refer to section 5 in this chapter.

For the forward filter part,

βt|t−1 = βt−1|t−1

Vt|t−1 =


Vt−1|t−1 +Q if st−1 6= st

Vt−1|t−1 otherwise

Kt =Vt|t−1X
′
t

(
XtVt|t−1X

′
t +Rt

)−1

βt|t = βt|t−1 +Kt
(
yt−Xtβt|t−1

)
Vt|t =Vt|t−1−KtXtVt|t−1

For the backward smoother part,

βt|t+1 =


βt|t +Vt|tV

−1
t+1|t

(
βt+1−βt|t

)
if st+1 6= st

βt|t otherwise

Vt|t+1 =


Vt|t−Vt|tV

−1
t|t+1Vt|t if st+1 6= st

Vt|t otherwise
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C. Estimation of states without Kalman filter and state smoother

Consider the general state space model in (1.17) and (1.18) in A1. Stack the two equations period

by period and collect all the data and states together, one obtains

y = Xβ +u (1.19)

where y =


y1

...

yT

, X =


X1 · · · 0
... . . . ...

0 · · · XT

, β =


β1

...

βT

, u =


u1

...

uT

,

with u∼ N (0,R) and R = Blkdiag
(
{Rt}T

t=1

)
.

The transition equation becomes

Hβ = ε (1.20)

where

H =



Iq

F Iq

F Iq

. . .

F Iq



and


ε1

...

εT

∼ N (0,S) with

S =



D

Q

Q
. . .

Q
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and initial state β1 ∼ N (0,D).

Equation (1.20) can be further written as

β ∼ N
(
0,K−1) (1.21)

with precision matrix K = H ′S−1H. (1.21) is regarded as the prior for β constructed from the

structure of transition equation (1.18). Thus all the state varibles nested in β can be drawn at a

time without forward filtering and backward smoothing:

β ∼ N(β̄ , P̄−1
β

)

with

P̄β = X ′R−1X +K

β̄ = P̄−1
β

(
X ′R−1y

)
Note that K and R are both block banded and sparse matrices, therefore so is P̄β .
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D. Efficient estimation of SVS-Full-TVP-VAR

Consider a standard TVP-VAR with SV:

yt = ct +A1,tyt−1 + · · ·+Ap,tyt−p +ut (1.22)

where yt is an n×1 vector of observed endogenous variables, ct is an n×1 vector of time varying

constants, {Ai,t}p
i=1 are n×n matrices of time varying autoregressive parameters, and ut is an n×1

vector of shocks following normal distribution ut ∼ N(0,Rt) , for t = 1, . . . ,T . The Rt with SV has

the same structure as in the section 2.3 this chapter.

Let βt = vec([ct ,A1,t , . . .Ap,t ]
′
) denote the vector of time varying parameters each period of

dimension k× 1, with k = n(1+np) and vec column stacking operator. The law of motion of βt

follows random walk process

βt = βt−1 + εt (1.23)

which is assumed that εt ∼ N (0,Q).

Rewrite (1.22) into the form of

yt = Xtβt +ut (1.24)

where Xt = In � [1,y
′
t−1, . . .y

′
t−p], with � Kronecker product. Then stacking (1.24) over time to

pool all the data together, one obtains

y = Xβ +u

where y =


y1

...

yT

, X =


X1 · · · 0
... . . . ...

0 · · · XT

, β =


β1

...

βT

, u =


u1

...

uT

,

with u∼ N (0,R) and R = Blkdiag
(
{Rt}T

t=1

)
.

The dynamic process of βt is also stacked into

Hβ = ε (1.25)
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where

H =



Iq

Iq Iq

Iq Iq

. . .

Iq Iq



and


ε1

...

εT

∼ N (0,S) with

S =



D

Q

Q
. . .

Q


and initial state β1 ∼ N (0,D).

From (1.25), the prior of whole states is distributed as

β ∼ NkT
(
0,K−1)

with precision matrix K = H ′S−1H . The prior is derived from the random walk structure seen in

matrix H.

After above several steps of transformation, a stochastic variable selection TVP-VAR with SV

is finally expressed as

y = Xθ +u (1.26)

θ = Γβ

with prior β ∼ N
(
0,K−1) and Γ = diag

(
{Γt}T

t=1

)
in which Γt = diag

(
γ1,t , . . . ,γk,t

)
. Apparently,
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the large square matrix Γ contains all the indicators γ j,t over identity and time corresponding to the

large column vectorβ stacking all the states βt .

The Bayesian estimation procedure is similar to the benchmark model of SVS-BVAR due to

the exclusion of Kalman forward filtering and backward smoothing. Here, the steps associated

with stochastic selection are given:

1. Draw β from the posterior density

β ∼ NkT (β̄ , P̄−1
β

)

with

P̄β = X?′R−1X?+K

β̄ = P̄−1
β

(
X?′R−1y

)
and X? = XΓ.

2. Sample γl from the posterior density

γl ∼ Bernoulli(1, π̄l)

where l = 1, . . . ,kT , π̄l =
l0l

l0l+l1l
, with

l0l = p(y|θ ,γ−l,γl = 1)π0l

and

l0l = p(y|θ ,γ−l,γl = 0)(1−π0l)

The expression p(y|θ ,γ−l,γl = 1) and p(y|θ ,γ−l,γl = 0) are conditional likelihood expres-

sions. Here we define θ ? to be equal to θ but with the lth element θl = βl in the case of

γl = 1. Similarly, we define θ ?? to be equal to θ but with the lth element θl = 0 when γl = 0.
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Then in terms of likelihood of (1.26), we can write l0l , l1l analytically as

l0l = exp(−1
2
(y−Xθ

?)′R−1(y−Xθ
?))πl (1.27)

l1l = exp(−1
2
(y−Xθ

??)′R−1(y−Xθ
??))(1−πl) (1.28)

Note that the order lth is randomly picked up, which is equivalent to assigning randomness

to both identity j and time t, for j = 1, . . . ,k and t = 1, . . . ,T , respectively.

3. Draw Rt with stochastic volatility that contains the same blocks and steps as in Primiceri

(2005) and Del Negro and Primiceri (2013) or De Wind and Gambetti (2014).

4. Go back to setp 1 again, start the next iteration.
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Chapter 2

A General Parsimonious Estimation of

Time-varying Vector Autoregressions
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2.1 Introduction

Since the pioneering work of Sims (1980), the vector autoregressive (VAR) models have become

popular and widely used in economic and policy analysis. The most importance of vector au-

toregressive models is that it provides a tool to analyse the dynamic relationship among multiple

macroeconomic variables by allowing all variables in a vector to response to all variables at all

lags, as in a economy practioners and economists not only care about the intertemporal relations,

but also focus on dynamic processes among macroeconomic variables which can lead them to con-

duct economic analyses and forecasting. Simplicity, tractability and properties of VARs such as

impulse response functions and variance decompotion make the original complicated problem of

exploring inter-relationship among different macro observations straightforward. Therefore, VAR

models gradually become more and more popular and dominate the empirical analysis in macroe-

conomics. For instance, researchers typically use VARs to find some empirical realities, then rely-

ing on these findings to establish dynamic stochastic general equilibrium models (DSGE), trying

to interpret the underlying rationales.

Econometric models are always evolutionary with the requirement to converge as close as pos-

sible to economic reality. The U.S. economy has experienced the Great Depression – the 1930s,

the Great Inflation - 1970s and early 1980s, the Great Moderation from middle 1980s to 2006 that

most industrialized economies also have the similar experience, and recent the Great Recession

since the global financial crisis in 2008 and still on the way to the recovery. Except for the charac-

teristics of business cycles, the U.S. economy also has experienced four chairmanships of Federal

Reserve, Burns (1970-1978), Volker (1979-1987), Greenspan (1987-2006) and Bernanke (2006-

2014). Did they conduct the same monetary policy or not? What’s the relationship between their

policies and the alternations of the above mentioned business cycles? Besides monetary policy,

are there other factors influencing the business cycle and have these factors changed over different

economic stages? To answer such questions and issues require that the conventional assumption

of the constant coefficients in VARs might be poor and have to be relaxed to be time varying. The

great decline in volatility – the property of the Great Moderation – in most macro-variables in the
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U.S. and in most industrialized economies led to an increasing focus on appropiate modeling of

the error covariance matrix in VARs and this led to the incorporation of multivariate stochastic

volatility in many recent empirical papers. Hence, the time varying coefficients on regressors and

stoachstic volatility on covariance matrix of forecast errors become the standard analysing tool

in applied macroeonomics. In model settings, from Cogley and Sargent (2001) with only time

variance on coefficients on regressors, based on which, Cogley and Sargent (2005) extended the

early model to stochastic volatility on covariance matrix of forecast errors with some restrictions,

finally Primiceri (2005) developed a model with sufficient flexibility on all the parameters that can

be considered as the today’s standard TVP-VAR workhouse.

The time verying parameter VARs with stochastic volatility is not a parsimonious model. This

kind of model increase paramters dramatically. Suppose a VAR with n dimention and p lags and

a constant. The number of coefficients on regressors follows k = n(1+ n · p) and the number of

parameters on covariance matrix of errors is m = n(n+1)
2 . When n and p increase, the total number

of paramters of this model will increase nonlinearly and causes the so called problem of parameter

proliferation, given that we usually have limited length of macro data sets. In addtion, satisfying

the recent research requirement of extending the constant parameters to time varying ones, there

will be T , the net sample periods in this model, time paths for the k+m parameters and the newly

created, associated covariance matrices of innovations to the dynamic process of above parameters.

In all, this TVP-VAR has total parameters of Kp (n, p,T ) = T (k +m)+ k(k+1)
2 + n(n+1)

2 + r(r+1)
2

where r = n(n−1)
2 . With limited sample span, over-parameterization, more or less, is inevitable,

especially in medium and large scale TVP-VAR models. This explains why in practice, small

scale models with short lags are often seen such as moetary policy analysis typically with three

variables and two lags.

Over parameterization problem in TVP-VARs with stochastic volatiliy strongly limits the num-

ber of variables and lags that can be incorporated in the model. Nevertheless, for many applica-

tions a large set of variables and more lags are necessary. In a modern economy, a large number

of variables work together and react each other. A variation of one variable will cause fluctua-
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tions of other variables and these dynamics will typically continue for a period. If some important

varibles are missing in the model, it probably will give rise to the corresponding missing of tran-

sition channels or shocks. A typical case is ‘price puzzle’ that will cause misunderstanding and

misleading in economic and policy analysis that usually seen in a small scale monetary analysis.

Banbura, Giannone, and Reichlin (2010), Carriero, Kapetanios, and Marcellino (2011) and Koop

(2013) demonstrate that a system of 15-20 variables performs better than small systems in point

forecasting and structual analysis.

As for the number of lags, for a quarterly data, Blanchard and Perotti (2002) argue that at

least 4 lags can catch the dynamic interaction of economy and fiscal policy. For a monthly data,

Uhlig (2005) use 13 lags to analyse effects of monetary policy shock. Alessandri and Mumtaz

(2014) investigate the effects of uncertainty shock under different financial regimes, also use 13

lags for a monthly data set. Generally, more variables and lags can capture potentially possible

inter-reactions among different variables.

Two conflicts arise. The first conflict is between preferred more variables and more lags and

the parameter proliferation, which becomes even stronger under time varying parameter framwork

that is often desired and required in current empirical time series analysis. As discussed above, the

problem of over parameterization is alway accompanying and become serious with the increase

of dimension of observations, number of lags and sample periods. The other conflict is between

estimation, computational burden and tractability. The TVP-VAR with stochastic volatility model

essentially is a combination of different state space models. The time varying parameters on regres-

sors and covariance matrix actully are state or latent variables in state equations that drive dynamic

process in measurement equations given other parameters and data. Note that the incorporation of

stochastic volatility typically involves nonlinear and non-gaussian state space blocks which abso-

lutely require high estimation skill and increase computational burden. Large data set, long lags

as well as time varying parameters make the estimation and computation much complicated and

sometimes hard to deal with.

The challenge facing the economists is how to build models or modify conventional models,
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that are flexible enough to capture the main dynamic process in the data set, but not to cause se-

rious over-parameterization, thus making the estimation tractable and result believable. There are

two branches in the literature. The first one is on shrinkage.1 The starting point is to set priors

that impose restrictions on the parameters, say shrinking to zero. The Minnesota Prior (see Doan,

Litterman and Sims, 1984 and Litterman, 1986) probably is the most typical one among them. The

basic idea of the prior is to make the VARs shrink to random walk, with stronger shrinkage for

coefficients on longer lags and across variables. Further development of this prior includes impos-

ing restrictions on sum of coefficients and cointegration, see Banbura et.al. (2010). Note that the

dimension of data set n has not changed, only using some particular priors to shrink to the desired

values of parameters. The second branch is based on factor idea that has been applied to differ-

ent directions. Since large data set is desirable and available in empirical analysis, several factors

that extracted from large data set could significally decrease the model dimension n and alleviate

over parameterization problem replying on the assumption that the bulk of dynamic inter relations

within a large data set can be explained by several common factors (Forni et al., 2002 and Stock

and Watson, 2002b). The factors that reduce the dimension and VARs that explore dynamic inter-

relationship motivate the combination of the two methods. Bernanke, Boivin and Eliasz (2005) and

Stock and Watson (2005) have combined the two models, the so called factor augmented vector

autoregressive models (FAVARs). Del Negro and Otrok (2008) and Korobilis (2013a) extended

the FAVAR models to have time varying features on parameters, hence the TVP-FAVARs. Using

also the factor idea, De Wind and Gambetti (2014) focus on the factors that drive time varying

parameters instead of those that drive large data set in factor models and factor augmented VAR

models. They find that a q dimensional factors can sufficiently capture the bulk of time variation in

the k dimensional latent parameters in the full rank TVP-VAR model and sometimes q� k. That

is the covariance matrix of the innovations to the time varying parameters is reduced rank rather

than full rank. Simply speaking, this model tranforms the original k sources of variations, the same

dimentison as the number of time varying parameters, to q sources, the number of factors. Kim

1Using shrinkage prior in large Bayesian VAR will be discussed in Chapter 3.
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and Yamamoto (2012) proposed a new approach to apply the factor idea. They argue that since

more lags sometimes are necessary to capture the dynamic process among variables, especially in

monthly data, recent lags could be qualified to drive longer lags due to that current variables are

more affected by recent lags in a standard VAR framwork. That is the constant vector and several

coefficient matrices on the recent lags are the dynamic sources driving the variation of the stan-

dard TVP-VAR model. Factor idea can also be used in the time variation, namely the stochastic

volatility, on covariance matrix of forecast errors in VAR. Carriero, Clark and Marcellino (2012)

proposed a computationally effective way to model stochastic volatility to greatly speed up com-

putations for smaller VAR models and make estimation tractable for larger models. The newly

presented method links to the observation that the pattern of estimatied volatilities in empirical

analysis is often very similar across variables. They used a common unobserved factor – com-

mon volatility – to drive the individual volatility in standard TVP model with stachastic volatility.

They find that common volatility model significantly improves model fit and forecasting accuracy

compared to constant volatility. Alessandri and Mumtaz (2014) by a VAR model and Mumtaz

and Theodoridis (2014) via a dynamic factor model also use common volatility to study effects of

‘endogenous’ uncertainty (generated from the model itself) on the U.S. economy.

As we discussed above, TVP-VAR with SV is not a parsimonious model which almost always

company over parameterization concern that could lead to misunderstanding and misleading in

economic inferences. A natural solution to this estimation is to make the model parsimonious and

tractable, meanwhile to be able to catch main dynamic characteristics among these variables.

In this chapter we propose a general parsimonious estimation method based on factor idea

that collects all the advantages of the above mentioned models. This model has the ability to

solve all the possible sources of parameter proliferation such as number of lags, dimension of

latent coefficients on regressors and complicated stochastic volatility, and therefore can reduce

the computation burden, making the estimation tractable whatever small or large models. That’s

why we call it ‘general parsimonious estimation’. This model is also flexible enough that could

pay different attention to different sources of possible over parameterization. For instance, if the
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number of lags is small enough and suitable for some economic analysis, the model only need to

focus on the dimension of latent coefficients and stochastic volatility.

Three papers are relevant to our method. Kim and Yamamoto (2012) is only on reduced lags

without possible factors driving latent coefficients and stochastic volatility; De Wind and Gam-

betti (2014) applies latent factor both on latent coefficients and stochastic volatiliy in estimation

procedure, but the complication of estimation of stochastic volatiliy still there; Carriero, Clark and

Marcellino (2012) use a latent factor as common volatility under constant coefficients.

We apply the ‘general parsimonious estimation’ presented in this chapter to small scale mon-

etary VAR. Specifically, we increase the number of lags from one to four to create possible over

parameterization enviroment. We implement principal component analysis on the covariance ma-

trix of innovations to latent coefficients. The results show that even though with only one lag, the

VAR model is still not parsimonious; as the number of lags increases, the problem of over fitting

become serious and several factors are enough to capture the amount of variation that is present in

full rank model. The common volatility from the model with one lag to the model with four lags

works very well that coincides with the feature of U.S. business cycle. We also checked economic

agents’ reaction to monetary policy shocks under the parsimonious estimation and find that there

are no significant changes in the responses to non-systematic monetary policy in line with Prim-

iceri (2005) and Sims and Zha (2006). These evidences suggest that parsimonious estiamtion is

not only good at alleviating over fitting, but also suitable for structural analysis.

The Chapter 2 is organized as follows. In section 2, we present the model specification that

is based on factor idea to conduct a parsimonious estimation. In section 3, Bayesian estiamtion

procedure is given step by step and we also point out that the free combination of different blocks in

estimation is equivalent to the simple verison of the presented general model seen in the literature.

Comparison with conventional model or estimation is also conducted to demonstrate the advantage

of reducing over-parameterization and at the same time also increase the estimation efficiency.

Section 4 in an empirical analysis, gives strong evidences of over-fitting even in a small scale

TVP-VAR and evaluates the performance of the factor driven model under the setting when the
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extent of over parameterization becomes more and more serious. Finally, Section 5 conludes.

2.2 Model specification

In this section, We present the general model that imposes all the possible factors that drive lags,

latent coefficients and stochastic volatility. Of course, when it applies to an empirical analysis,

appropriate settings should be chosen by researchers depending on the sepcific objects.

Suppose yt is an n×1 vector that follows VAR(p) process

yt = ct +B1,tyt−1 + · · ·+Bp,tyt−p +ut (2.1)

where ct is an n×1 time varying constant, {Bi,t}p
i=1 are n×n matrices of time varying autoregres-

sive parameters, and ut is an n× 1 vector of forecast errors. The errors are assumed to indepen-

dently and identically follow normal distribution ut ∼ N (0,Σt).

Let’s first look at the stochastic volatility part of Σt . Following Carriero et. al. (2012), we

assume that

Σt = A−1DtA−1′ (2.2)

where A is a lower triangluar matrix with values of ones on the main diagonal. The volatility

process is defined as

Dt = λtS (2.3)

S = diag
(
[1,s2, . . . ,sn]

′) (2.4)

log(λt) = F · logλt−1 +ηt (2.5)

where ηt ∼ iidN (0,Qh). h = log(λt) follows AR(1) process that is common to all variables and

drives the time variation in the entire covariance matrix of the VAR errors. The first element

of diagonal variance matrix S – the loading – is normalized to one for identification of common
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volatility λt .

Next we can rewrite equation (2.1) using the above volatility structure in the form of

yt = BtXt +λ
1
2

t A
−1

S
1
2 εt (2.6)

where Bt = [ct ,B1,t , . . . ,Bp,t ] and Xt =
[
1,y′t−1, . . . ,y

′
t−p
]′

. Following Kim and Yamamoto (2012),

the time varying coefficients on regressors can be decomposed into

Bt = B+ B̄tG (2.7)

where B̄t and G are n× r and r× (np+1) respectively. For the model to be properly identified, we

assume that

B̄1 = 0 and G = [Ir G1] (2.8)

we as usual assume that bt = vec
(

B̄
′
t

)
follows random walk

bt = bt−1 +ubt (2.9)

where ubt ∼ iidN (0,Qb). Note that from B̄tG= [B̄t B̄tG1], B̄t should have the similar time variation

to the elements in the first r columns of Bt matrix of the unrestricted model.

Finally, we further assume that the nr×1 time varying paramter bt is driven by q factors where

q≤ nr (De Wind and Gambetti, 2014). This means that the covariance matrix Qb is of less than full

rank. Decompose the covariance matrix Qb = ΛbΛ
′
b where Λb is a nr×q matrix as factor loadings

implying that rank (Qb) = q. The transition equation (2.9) can be written as

bt = bt−1 +Λbυt (2.10)

where correspondingly υt is a q×1 shocks that follows υt ∼ N
(
0, Iq

)
. The above equation (2.10)

implies that 4bt is on the column space of Λb but bt is not necessarily in the column space of
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Λb. In other words, changes in time varying parameters are driven by factors while levels are not

necessary since there are more forces determining the economy than forces changing the economy.

Thus the law of motion of (2.10) can be further written as

bt = Pbbt +Mbbt (2.11)

where Pb = Λb

(
Λ
′
bΛb

)−1
Λ
′
b is a projection matrix onto the column space of Λb that contains the

changing part of the bt ; Mb = Inr−Pb is the projection matrix onto the left null space of Λb that

sizes the time invariant part of bt . Defining b̃t =
(

Λ
′
bΛb

)−1
Λ
′
bbt as driving factors, then

bt = Λbb̃t +Mbb0 (2.12)

and the law of motion in terms of the underlying factors follows

b̃t = b̃t−1 +υt (2.13)

via premultiplying equation (2.10) by
(

Λ
′
bΛb

)−1
Λ
′
b both sides.

The model specification consists of three parts. Equations from (2.1) to (2.5) describe a com-

mon factor that drive the volatilities of all the variables in yt . This factor application is due to two

reasons. One is from the observation that the pattern of estimated volatilities in empirical analysis

is often very similar across variables. As discussed above, the U.S. economy has experienced two

episodes of the ‘Great Inflation’ and the ‘Great Moderation’, respectively. In the former period,

most macroeconomic variables had very high volatility; while in the latter period, modest volatiliy

was shared by most macro-variables. The other is that it greatly reduces the computational budern

in which nonlinear and nongaussian state space involoved in full stochastic volatility part has to

be transformed to linear gaussian state space via seven (Kim, Shephard and Chib, 1998) or ten

(Omori, Chib, Shephard and Nakajima, 2007) mixture normals. In addition, the length of history

of common volatility is always fixed at T , independent of n, while the full volatility is determined
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by both T and n, i.e. n(n+1)
2 ·T .

Equations (2.6) - (2.9) give the factor idea of using early lags to drive whole lag coefficients.

Many empirical analysis, especially in field of forecasting, have evidenced that recent lags are more

relevant than long lags affecting current variables which justfies our model setting. The last four

equations (2.10) - (2.13) present another interpretation of dynamic process of latent time varying

coefficients that only limited factors drive the the bulk of variation in time varying coefficients. De

Wind and Gambetti (2014) give the emipical evidence and theoretical support for this setting.

One thing worth mention is that the three portions of the general-setting model is not neces-

sarily connected together. They can be freely combined or independently exist with respect to

the research object ones are conducting. For instance, if relaxing one of factor restrictions, the

corresponding part becomes the standard setting. This can be seen clearly in Bayesian estimation

procedure in the next section.

2.3 Bayesian estimation procedure

In this section, we describe the Bayesian estimation procedure step by step. In each step or, pre-

cisely speaking, in each block, after some appropriate transformation, the estimation finally re-

duces to standard Bayesian estimation such as linear regression models and state space models

either linear or nonlinear.

2.3.1 Draw a history of {bt}T
t=1

We need some transformation to construct a state space model for bt . Substituting the decomposi-

tion equation (2.7) into measurement equation (2.6), one obtains

yt = BXt + B̄tGXt +ut (2.14)
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It can be further written as via column stacking operator both sides

y?t = Zb,tbt +ut (2.15)

where y?t = yt−BXt , Zb,t =
(

In � (GXt)
′)

, bt = vec
(

B̄
′
t

)
and ut ∼ N (0,Σt); � denotes Kronecker

product and vec is column stacking operator.2The composition of bt = Λbb̃t +Mbb0 in equation

(2.12) then is plugged into (2.15) to obtain

y?t = Zb,tΛbb̃t +Zb,tMbb0 +ut (2.16)

Clearly, We find that drawing the history of bt is divided into three steps: i) draws of b̃t , ii) draws

of Mbb0 and iii) draws of bt based on i) and ii).

2.3.1.1 Draw a history of
{

b̃t
}T

t=1

The state space model for b̃t based on equation (2.16) is orgonized as

y??t = Z?
b,t b̃t +ut (2.17)

with the law of motion in (2.13)

b̃t = b̃t−1 +υt

where y??t = y?t −Zb,tMbb0, Z?
b,t = Zb,tΛb, ut ∼N (0,Σt) and υt ∼N

(
0, Iq

)
due to the decomposition

of Qb. Since the above two equations form the standard linear and gaussian state space model,

posterior draws of {bt}T
t=1 can be sampled by the algorithm of Carter and Kohn (1994).

Standard Kalman filter and a smoother apply to the linear and gaussian state space model for

b̃t . We herein give the basic description. The filter goes forward until T and obtain a draw from

b̃T ∼ N
(
b̃T |T ,VT |T

)
in the last period; Then based on the draw of b̃T as an obervation, the filter

goes backward into a smooth process until the first period. That is b̃t ∼ N
(
b̃t|t+1,Vt|t+1

)
based

2vec(ABC) =
(

A�C
′
)

vec
(

B
′
)
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on previous draw as a new observation successively for t = T − 1, . . . ,1. The forward recursive

formulae are given by

Vt|t−1 =Vt−1|t−1 + Iq

Kt =Vt|t−1Z?′
b,t

(
Z?

b,tVt|t−1Z?′
b,t +Σt

)−1

b̃t|t = b̃t−1|t−1 +Kt
(
y??t −Z?

b,t b̃t−1|t−1
)

Vt|t =Vt|t−1−Kt
(
Z?

b,tVt|t−1
)

where the notation x�|t is used to condition on the information set up to and including time t. Note

that the initialization of the recursion follows from the prior distribution on b0|0∼N (b0,V0). By the

definition of b̃t =Rbbt where Rb =
(

Λ
′
bΛb

)−1
Λ
′
b, then prior distribution becomes b̃0|0∼N

(
b̃0,Ṽ0

)
where correspondingly b̃0 =Rbb0 and Ṽ0 =RbV0R

′
b. The backward recursion, namely the smoother

has

b̃t|t+1 = b̃t|t +Vt|tV
−1

t|t+1

(
b̃t+1− b̃t|t

)

Vt|t+1 =Vt|t−Vt|tV
−1

t|t+1Vt|t

Finally, b̃t premultiplying by Λb obtain the time varying part of bt following equation (2.12).

2.3.1.2 Draw Mbb0 as a whole

After drawing of time varying part, now we consider the time invariant part of bt . Equation (2.16)

can be organized as

y??t = Zb,tδ +ut (2.18)

where y??t = y?t − Zb,tΛbb̃t and δ = Mbb0. The above equation can be interpreted as a restricted

linear regression, as the vector coefficient δ from its definition is on the column space of Mb
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naturally with the restriction Pbδ = 0 or equivalently Rbδ = 0.

Stacking (2.18) with the above restriction, it displays as

y?? = Zbδ +u (2.19)

Rbδ = 0

where y?? =
[
y
′
1, . . . ,y

′
T

]′
, Zb =

[
Z
′
b,1, . . . ,Z

′
b,T

]′
, u =

[
u
′
1, . . . ,u

′
T

]′
as well as u ∼ N (0,Σ?) with

Σ? = Blkdiag([Σ1, . . . ,ΣT ]) in which covariance matrix each period is placed on the main diagonal.

Details on the estimation of the restricted linear regression is delegated to appendix in this chapter.

The basic idea to dealing with the Bayesian estimation with restrctions on the parameters is to

think of the restrictons as another prior information and incoporate it into the posterior. Since

b0|0 ∼ N (b0,V0), the prior for δ becomes δ ∼ N (δ ,V δ ) where δ = Mbb0 and V δ = MbV0M
′
b. The

posterior of δ also follows normal distribution

δ ∼ N
(
δ̄ ,V̄δ

)
with

δ̄ =

(
Inr−Ṽδ R

′
b

(
RbṼδ R

′
b

)−1
Rb

)
δ̃

V̄δ =
(

Inr−Ṽδ R
′
b
(
RδṼδ Rb

)−1 Rb

)
Ṽδ

where the posterior mean of δ̃ and posterior variance of Ṽδ are from the standard Bayesian estima-

tion of linear unrestricted regression

δ̃ =
(

Z
′
bΣ

?−1Zb +V−1
δ

)−1

Ṽδ = δ̃

(
Z
′
bΣ

?−1y??+V−1
δ

δ

)
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2.3.1.3 Draw a history of {bt}T
t=1

The final step is straightforward to sum the time varying part and time invariant part together, i.e.

bt = Λbb̃t +Mbb0 which yields bt draw for t = 1, . . . ,T . This completes the drawing from the

posterior distribution of {bt}T
t=1 via a two separate gibbs sampling.

2.3.2 Draw reduced rank covariance matrix Qb

The posterior distribution of Qb only depends on the history of all bts. Sampling is based on the

following state equation (2.9)

bt = bt−1 +ub,t

The posterior distribution of Qb follows inverse wishart distribution given the prior distribution of

the same type

Qb ∼ SIW
(
Q̄b, ν̄

)
with

Q̄b =
T

∑
t=2

(bt−bt−1)(bt−bt−1)
′
+Qb

ν̄ = ν +T −1

where Qb and ν are scale matrix and degree of freedom respectively for prior inverse wishart

distribution of reduced rank Qb.

2.3.3 Draw constant matrix B

Go back to equation (2.14), place unrelated term to the left hand side and obtain the linear regres-

sion associated with matrix B

y?t = BXt +ut (2.20)
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where y?t = yt− B̄tGXt and ut ∼ N (0,Σt) with ut = λ
1
2

t A−1S
1
2 εt . Transpose the above equation and

divide by
√

λt both sides, we obtain

y?
′

t /
√

λt =
(

Xt/
√

λt

)
B
′
+u

′
t/
√

λt (2.21)

Stacking the above equation row by row

Y ? = XB
′
+U (2.22)

then stacking the equation column by column, we obtain the final equation form for our Bayesian

estimation

y? = Ξb+u (2.23)

where Ξ = In �X , b = vec
(

B
′
)

and u = vec(U) with u∼ N (0,Σ� IT ).3

The aim of the above steps is to transform the heterogeneous linear regression to homogeneous

linear regression model. With respective to (2.23), standard normal posterior distribution of b can

be found with also the normal prior distribution

b∼ N
(
b̄,V̄b

)
with

b̄ = V̄b

(
Ξ
′
(Σ� IT )

−1 y?+V−1
b b
)

V̄b =
(

Ξ
′
(Σ� IT )

−1
Ξ+V−1

b

)−1

where prior follows b∼ N (b,V b). Finally transform column vector b back to matrix B.

3vec(ABC) =
(

C
′
�A
)

vec(B)
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2.3.4 Draw constant matrix G1

We still focus on equation (2.14). Place the term BXt to the left hand side based on previous draw

of B and obtain

y?t = B̄tX1,t + B̄tG1X2,t +ut

where y?t = yt−BXt and the decomposition of Xt into X1,t and X2,t is due to the structure G= [Ir G1].

We further get the linear regression associated with G1by column stacking operator towards the

above equation both sides

y??t =Wtg1 +ut (2.24)

where y??t = y?t − B̄tX1,t , Wt =
(

B̄t �X
′
2,t

)
, g1 = vec

(
G
′
1

)
and ut ∼ N (0,Σt). The same as (2.21),

heteroscedasticity can be removed through dividing both sides of (2.24) by
√

λt . Here we skip this

step, directly transform the (2.24) into a large matrix form

y?? =Wg1 +u (2.25)

where y?? =
[
y??

′
1 , . . . ,y??

′
T

]′
, W =

[
W
′
1, . . . ,W

′
T

]′
, ut =

[
u
′
1, . . . ,u

′
T

]′
and u ∼ N (0,Σ?) with Σ? =

Blkdiag([Σ1, . . . ,ΣT ]).

The posterior of g1 follows normal with variance and mean given by V̄g1 and ḡ1 respectively

g1 ∼ N (ḡ1,V̄g1)

ḡ1 = V̄g1

(
W
′
Σ
?−1y??+V−1

g1
g1

)
V̄g1 =

(
W
′
Σ
?−1W +V−1

g1

)−1

and prior follows g1 ∼ N
(

g1,V g1

)
.
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2.3.5 Draw structural impact matrix A

To draw impact matrix A, we concentrate on equation (2.6). Take unrelated term to the left hand

side, obtaining

Aŷt = λ
1
2

t S
1
2 εt (2.26)

where ŷt = yt −BtXt . Since the recursive structure of A – lower triangular matrix with value of

ones on the main diagonal, we can estimate (2.26) individually

ŷi,t =−ŷ
′
−i,tαi +λ

1
2

t s
1
2
i εt (2.27)

for i = 2, . . . ,n and for t = 1, . . . ,T . ŷ−i,t collect elements from ŷ1,t to ŷi−1,t and αi nest corre-

sponding row elements in matrix A. To estimate the above equation, divide by
√

λtst both sides to

remove the error heteroscedasticity

ŷi,t/
√

λtst =
(
−y−i,t/

√
λtst

)
αi + εt

Stack them row by row to obtain

ŷi = X−iαi + ε (2.28)

where ε ∼ N (0, IT ).

The posterior of αi follows normal with mean and variance

αi ∼ N (ᾱi,V̄α)

with

ᾱi = V̄α

(
X
′
−iŷi +V−1

α α i

)
V̄α =

(
X
′
−iX−i +V−1

α

)−1

and prior αi ∼ N (α i,V α).
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2.3.6 Draw diagonal elements of S

Using equation (2.27), divide both sides by
√

λt and obtain

ŷi,t/
√

λt =
(
−y−i,t/

√
λt

)
α + s

1
2
i εt

again stack row by row

ŷi = X−iαi + ε (2.29)

where ε ∼ N (0,siIT ) for i = 2, . . . ,n.4

Given the prior si ∼ IG(a,b) where IG denotes inverse gamma distribution, the posterior fol-

lows

si ∼ IG
(
ā, b̄
)

with

ā = a+
T
2

b̄ = b+
ε
′
ε

2

Note that the step 5 of drawing αi can be merged into step 6 only focusing on equation (2.29).

2.3.7 Draw common stochastic volatility {λt}T
t=1

Unlike bt , the latent factor λt is not in a linear and gaussian state space model given other pa-

rameters and hyperparamters. Thus typical way of multiple drawing of latent variables of Carter

and Kohn (1994) algorithm is no longer suitable for λt . Following Jacquier et.al. (1994), single

drawing date by date is used for the nonlinear model. Carlin et.al (1992) show that conditional

distribution of state variables in a general state space model can be written as product of three

4i starting from 2 is for the identification of common (latent factor) volatility. See section 2 on the model specifi-
cation.
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terms

f
(
ht |Θ,yT)

∝ f (ht |ht−1) · f (ht+1|ht) · f (yt |ht ,Θ) (2.30)

which is the starting point of sampling of the latent factor ht = log(λt). The first two terms on

the right hand side can be further written as f (ht |ht+t ,ht−1) ∝ f (ht |ht−1) · f (ht+1|ht).5 Hence

conditional posterior of ht is now a product of two terms

f
(
ht |Θ,yT)

∝ f (ht |ht−1,ht+1) · f (yt |ht ,Θ) (2.31)

That is the target distribution from which draws of ht come.

Nonlinearity of the state space model on measurement equation makes the posterior target does

not have an analytical form, therefore metropolis algorithm is required. We choose f (ht |ht−1,ht+1)

as proposal since it is part of target distribution with the same support and the most importance

is that the proposal is analytical due to that the law of motion of the common factor is linear

and gaussian. The basic idea is that one can regard ht as paramters to be estimated, ht+1 as the

obserbation driven by ht and ht−1 as prior information about ht . This can be seen explicitly in

successive two periods

ht = F ·ht−1 +ηt

ht+1 = F ·ht +ηt+1

from the first equation one can set prior for ht ∼ N (F ·ht−1,Qh) while in the second equation ht

is coefficient to be estimated and ht+1is an observation. From the standard Bayesian estiamtion of

linear regression model, one is familiar with

• For t = 1, . . . ,T −1,

ht ∼ N (Fht−1,Qh)

5 f (ht |ht−1,ht+1) =
f (ht−1,ht ,ht+1)

f (ht−1,ht+1)
=

f (ht+1|ht ,ht−1)· f (ht |ht+1)
f (ht+1|ht−1)

∝ f (ht+1|ht) · f (ht |ht−1)
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ht |ht−1,ht+1 ∼ N (uh,Qh) (2.32)

with

uh =Vh

(
F
′
Q−1

h ht+1 +Q−1
h Fht−1

)
Vh =

(
F ′Q−1

h F +Q−1
h

)−1

• For t = 0,

h0 ∼ N (uh,V h)

since

h1 = F ·h0 +η1

then

h0 ∼ N (ūh,V̄h) (2.33)

ūh = V̄h

(
F
′
Q−1

h h1 +V−1
h uh

)
V̄h =

(
F
′
Q−1

h F +V−1
h

)−1

• For t = T ,

hT |hT−1 ∼ N
(
uT,h,VT,h

)
(2.34)

uT,h =VT,h
(
Q−1

h FhT−1
)

VT,h =
(

F
′
Q−1

h F +Q−1
h

)−1

With the above proposals at hand (2.32) - (2.34), the date by date independence metropolis is

implemented as follows

1. When t = 0, draw h0 from (2.33) given prior for h0.

2. When t = 1, . . . ,T −1, a) draw a candidate h?t from (2.32); b) compute the acceptance ratio
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(probability) r = min
(

f (yt |h?t ,Ξ)
f(yt |hold

t ,Ξ)
, 1
)

where f (yt |ht ,Ξ) is the likelihood of the observation

t; c) for each h?t , draw a value u from the Uniform (0,1) distribution. If u ≤ r, accept h?t as

hnew
t . Otherwise, still keep hold

t in period t.

3. When t = T , a) draw a candidate h?T from (2.34); b) compute the acceptance ratio (probabil-

ity) r = min
(

f (yT |h?T ,Ξ)
f(yT |hold

T ,Ξ)
, 1
)

where f (yT |hT ,Ξ) is the likelihood of the observation T ; c)

for each h?T , draw a value u from the Uniform (0,1) distribution. If u≤ r, accept h?T as hnew
T .

Otherwise, still keep hold
T in period T .

4. Repeat step 1 to step 3 date by date in each iteration.

We complete the drawing of ht from t = 1 to t = T . Note that though there is no explicit backward

smoother procedure as in the algorithm of Carter and Kohn (1994) for linear gaussian model, the

draws of ht are stll based on the information set of all the observations as they directly come from

posterior condition f
(
h1, . . . ,hT |yT ,Ξ

)
instead of two seperate steps of forward Kalman filter and

a backforward smoother with the analytical expression in linear gaussian model.

2.3.8 Draw coefficient F

Give the previous draws of {ht}T
t=1with equation (2.5)

ht = F ·ht−1 +ηt

where ηt ∼ N (0,Qh). By typical column stacking implementation

yh = F · xh +η (2.35)

the posterior of F has

F ∼ N
(
ūF , Q̄F

)
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with

ūF = Q̄F

(
Q−1

h x
′
hxh +Q−1

F uF

)
Q̄F =

(
Q−1

h x
′
hyh +Q−1

F

)−1

where prior F ∼ N
(

uF ,QF

)
.

2.3.9 Draw variance Qh

Still focusing on equation (2.35) with prior distribution of inverse gamma Qh ∼ IG(c,d), the pos-

terior becomes

Qh ∼ IG
(
c̄, d̄
)

with

c̄ = c+
T
2

d̄ = d +
η
′
η

2

The above nine steps or nine blocks consist of one iteration in Bayesian estimation via Markov

chain Monte Carlo (MCMC). The MCMC simulation involves Gibbs sampling and Metropolis

Hasting algorithm. After discarding some burn-in iterations, the draw of parameters and hyper-

parameters from each conditional posterior is equivalent to one from joint posterior from which

bayesain inference can be conducted.

The characteristic of the model is that we use factor idea on lags, coefficients and volatility

to make the TVP-VAR model parsimonious. We use first several lags to drive long lags that are

identified by G matrix, see (2.8); We use a latent factor, namely the common volatility to represent

the volatilities of the whole observations that is identified by S matrix, see (2.4 ) and finally several

factors could drive the latent coefficients by decomposing covariance matrix Qb into reduced rank

that can be seen in (2.10 ) and (2.11). The difference of our model with conventional factor models

or factor augmented models is that we focus on reducing dimension of parameters rather than on
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dimension of observations in a rich data set.

In the next section, we apply this model to monetary policy analysis to evaluate the model

performance and make some inferences.

2.4 Empirical analysis

In this section, we first analyse whether there are enough evidences for factor driving of the dy-

namic process of the time varying coefficients in the TVP-VAR model. We apply the general

factor-driven model to a typical small scale monetary VAR. We however still find strong evidences

in supporting factor driving. Then we turn to structrual analysis on the agents’ response to mone-

tary policy shock. No significant difffences are found.

The same data is used as in Chapter 1. It contains three variables, namely inflation rate, unem-

ployment rate and short rate of 3-month treasury bill rate which cover the period from 1953 Q1 to

2006 Q3 before the 2008 financial crisis after that unconventional monetary policy was conducted.

The reason we choose this data set is threefold. First, it is a good description of workings of the

economy in real activity, nominal variable and monetary policy that explicitly correspond to IS

curve, Philips Curve and policy rule in a typical small scale DSGE model. Thus this data set is

widely used in policy and business cycle analysis and also a subset of medium or large scale data

set for such analysis; Second, due to the well known problem of parameter proliferation in TVP-

VAR with or without SV, researchers usually tend to use such kind of small data set to weeken this

concern in order to make their findings or/and conclusions belivable. Based on this arrangement,

we try to ask is there still over-parameterization in this small scale model they specially choose and

if it is, is it strong enough; Lastly, since the data is widely used, it is convenient for us to conduct

comparison with extant literature.
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2.4.1 Are factors important in time varying parameters?

In this subsetion, we test whether there is enough evidence supporting over fitting in the small

scale TVP-VAR. That is the precondition and starting point for our factor-based model. The test

is based on two models that all impose no factor restriction on time varying coefficients on re-

gressors, namely let the coefficients freely fluctuate. The only difference is that one with full

stochastic volatility (Primiceri, 2005) and the other common volatility (Carriero et al., 2012). In-

cluding stochastic volatility in the model is because shutting off the volatility channel probably

will cause misunderstanding of the dynamic process.6 If the test is implemented in a model that

can potentially cause the amount of time variation originating from the part of volatiliy incorrectly

transferring to the part of time varying coefficients on regressors – that is the time varying coef-

ficients now have more variation than they should have, even though we find evidence on over

parameterization, the result is still questionable. Testing results from both models with SV are

very similar, here we only present the results from the model with common volatility for the save

of space.7

The TVP-VAR with common volatility (TVP-VAR-CV for short hereafter) is implemented

with one lag to four lags with common volatility respectively. We conduct pincipal component

analysis of the covariance matrix of innovations to time varying coefficients Qb in each model.

Table 2.1 and Table 2.2 give the contribution of each factor for each model with lag from one to

four. They are given in terms of mean and median in percentage in descending order. Some figures

do not list in the tables because contributions are already too small.

In the model with only 1 lag, it has only 12 time varying coefficients each period and therefore

the most less over-fitting model. Principal component analysis shows that factor driving is still very

obvious and can not be ignored. From Table 2.1 under the Lag 1 title, we find that the first factor

6Consider a AR(1) process yt = ρyt−1+ut where ut ∼N
(
0,σ2

)
. The unconditional variance of yt is var(yt)=

σ2

1−ρ2

. If the volatility σt is increasing with time, but the model is estimated on time varying coefficient ρt with constant σ ,
we will find the persistent ρt of the model is increasing that contradicts the reality.

7The empirical test on the TVP-VAR with full SV is also conducted. The results are almost exactly the same as
common SV which confirms the finding in Carrero et al. (2012) that for the typical U.S. data set, common SV is a
good representation for full SV.
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TVP-VAR-CV Lag 1 Lag 2
Principal component Mean % Median % Mean % Median %

1 63.8684 63.5164 96.0390 96.1510
2 18.2649 18.9576 1.6741 1.0047
3 11.4011 11.0741 0.5968 0.7234
4 3.0299 2.9678 0.4953 0.4322
5 1.2880 1.3223 0.3128 0.2725
6 0.9465 0.9347 0.2257 0.2507
7 0.5503 0.5536 0.1662 0.2011
8 0.3539 0.3742 0.1353 0.1691
9 0.2276 0.2251 0.0903 0.1464

10 0.0463 0.0457
11 0.0146 0.0213
12 0.0085 0.0071

Table 2.1: Contribution for each factor via principal component analysis on covariance matrix Qb
for TVP-VAR-CV from lag one to lag two

TVP-VAR-CV Lag 3 Lag 4
Principal component Mean % Median % Mean % Median %

1 95.1109 93.5693 93.7272 91.1517
2 1.8860 1.7230 3.1857 2.3241
3 0.8257 1.0010 0.9423 1.1121
4 0.5718 0.5718 0.4749 1.0458
5 0.3397 0.5330 0.4012 0.6961
6 0.2658 0.4804 0.2641 0.6427
7 0.1683 0.3620 0.2270 0.4846
8 0.1612 0.3288
9

10
11 0.0712 0.2264
12 0.0728 0.1361

Table 2.2: Contribution for each factor via principal component analysis on covariance matrix Qb
for TVP-VAR-CV from lag three to lag four
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Figure 2.1: Contribution and cumulative contribution for lag 1

Notes: This is TVP-VAR-CV with 1 lag and 12 coefficients on regressors each period. The left
panel plots cumulative contribution for all the factors via principal component analysis of covari-
ance matrix Qb. The right panel plots contribution for each factor in descending order via principal
component analysis of covariance matrix Qb. The solid line represents posterior mean, while
dashed line posterior median.
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Figure 2.2: Contribution and cumulative contribution for lag 2

Notes: This is TVP-VAR-CV with 2 lag and 21 coefficients on regressors each period. The left
panel plots cumulative contribution for all the factors via principal component analysis of covari-
ance matrix Qb. The right panel plots contribution for each factor in descending order via principal
component analysis of covariance matrix Qb. The solid line represents posterior mean, while
dashed line posterior median.
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Figure 2.3: Contribution and cumulative contribution for lag 3

Notes: This is TVP-VAR-CV with 3 lag and 30 coefficients on regressors each period. The left
panel plots cumulative contribution for all the factors via principal component analysis of covari-
ance matrix Qb. The right panel plots contribution for each factor in descending order via principal
component analysis of covariance matrix Qb. The solid line represents posterior mean, while
dashed line posterior median.

accounts for 64% contribution of the variation of all coefficients. The second takes 18% much less

than the first and the third 11% with a moderate amount of interpretation. This dynamic process

can be found in Fig 2.1 in which the left panel gives the cumulative contribution and the right panel

shows the contribution for each factor where solid line denotes mean and dashed line median. It

is easy to observe that the first three factors, all above 10%, together account for near 95% and

the first six factors together almost 100%. After the sixth factor, all the remaining factors with

very little explanation can be ignored which is evidenced by the right panel of Fig 2.1. Generally

speaking, the samll scale model with the shortest lag indicates that it is still very over fitting, at

least half of the principals should be discarded.
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Figure 2.4: Contribution and cumulative contribution for lag 4

Notes: This is TVP-VAR-CV with 4 lag and 39 coefficients on regressors each period. The left
panel plots cumulative contribution for all the factors via principal component analysis of covari-
ance matrix Qb. The right panel plots contribution for each factor in descending order via principal
component analysis of covariance matrix Qb. The solid line represents posterior mean, while
dashed line posterior median.
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Let’s go to two lags. The two columns under the title of Lag 2 strongly suggest that, in Table2.1,

the first factor is large enough with 96% to interpret almost all the variation in the part of time

varying coefficients, while the second factor, in contrast to the model of one lag, dramatically

decline to less than 2%. This can be evidenced by the right panel of Fig 2.2. After the second

factor, all the remaining factors have contributions close to zero. When the model is set to three

lags, the result is very similar that the first accounts for more than 95%, the second less than 2%

and from the third onward, all factors are very near zero, see Fig 2.3 intuitively. The model of

four lags is also the same case no matter in mean or median even though the number of factor

candidates raising to 39, which can be directly observed in Fig 2.4. Models of two, three and four

lags share the same property that only the first factor account for most and two or three together

for almost all the variation, while the model with one lag needs more factors where the tangent of

cumulative percentage curve in Fig 2.1 is less steeper than others in Fig 2.2 to Fig 2.4.

At least three findings and implications can be derived. The first, there are strong evidence of

factor driving of dynamic process in time varying coefficients no matter in the model of one lag or

of four lags. This indicates that in a typical model settings of TVP-VARs, the number of dynamic

sources, also the same number of coefficients should be dramatically reduced.

The second, following the first, it further confirms researchers’ concern that TVP-VAR is not

a parsimonious model even it is set in a small scale with short lags which are in line with Cogley

and Sargent (2005) and De Wind and Gambetti (2014). Small scale TVP-VAR models still need

factor-driven estimation.

The third, we find significant difference in the style of factor driving in model of one lag and

model of more lags. In the context of the typical three observations, one-lag model needs more

factors than more-lag models and with the increase of the number of lags, the style of (almost)

one factor leading is consistent from two-lag model to four-lag model.8 The cosistency of one

factor driving means that the sources of variation in the model have been already fully identified,

implying that more than enough lags will cause serious over fitting. A reasonable explanation is

8We also tried lags more than four, the results are quantitatively the same.
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that if a model does not have enough lags, its dynamic inter relationship among variables could be

messed up and the factors extracted from it distribute on a broad range (see again the left panel of

Fig 2.1) such that economic implication is difficult to give, displaying merely some purely statistic

properties. Nevertheless, if with enough lags, two lags above, the inter relationship can be fully

released and expressed, therefore the factor driving analysis could imply some important structural

interpretation.9 If more than enough, since important factors have been fully extracted, naturally

serious over fitting will arise, comparing Fig 2.4 with Fig 2.2 on the right panel.

The above three variable empirical test consistently demonstrates that almost only one im-

portant force influence the dynamics of the economy, confirming again that there are much more

forces determining the economy than those changing the economy. The result of empirical test

is in line with dynamic stochastic general equilibrium model (DSGE). If a DSGE model can be

transfomed into a VAR form under some conditions (Fernandez-Villaverde et al. 2006, Morris,

2012 and Ravenna, 2007), the coefficients on the regressors must be the functions of ‘deep param-

eters’ of preference, technoloy and policy rule in the DSGE model and therefore the coefficients

in the transformed VAR are cross equation restricted.10 Changes in one deep parameter will cause

changes in almost all the coefficents in the VAR. This provides theoretical support for the results

of the above empirical test and recommend a factor-driven VAR model setting.

Since we find strong factor leading evidence, even in a small scale TVP-VAR, empirically and

theoretically, another question will be naturally asked can the model with factor driven specified

in section 2 be used in structrual economic analysis and is it consistent or inconsistent with the

literature. We answer these questions in the next subsection.

9The ‘structural interpretation’ does not mean structural identification associated with structural shocks in VARs.
It only mean several important factors already sufficiently drive the dynamic process of the economy.

10A general representation of a log-linearized DSGE model has a state space form. A state space corresponds to
a VARMA form (see, e.g., Aoki, 1990). But the VARMA does not necessarily can be transformed to a VAR form.
Fernandez-Villaverde et al. (2006) give the VAR(∞) expression for a DSGE under some conditions; Ravenna (2007)
for VAR(p) and Morris (2012) for VAR(1)under required conditions. Giacomini (2013) give a good literature review
on the relationship between DSGE and VAR models.
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2.4.2 Structural analysis and model evaluation

The above empirical tests for the three variables model - inflation rate, unemployment rate and

3-month treasury rate - suggest that factors should be imposed on the time varying coefficients

and two lags are enough for fully capturing the dynamic process in the data and therefore the time

variation in the latent coeffficients. Since the empirical tests have already found that the factor

leading style for the first lag is quite different with the style for from two to four lags, we can not

use early lags – the first lag and constant here – to drive the remaining long lags. Hence the factor

settings on lags should be skipped under this empirical context.11

We implement the analysis in a model setting factors only on time varying coefficients and

stochastic volatility. That is, we estimate the model only involving factors on coefficients and

volatility, imposing no restriction on lags. As discussed in section 3, though the model gives a

general factor treatment to every part of TVP-VARs, where the factor restriction should be used

depends on the specific research object.

In this section we have two purposes. One is to investigate whether agents’ responses to mone-

tary policy shocks have changed or not over sample period and the second is to evaluate the model

performance under different lag settings. The first is to check after factor extracting whether the

model is still capable of structural analysis and the second is to check whether the model is flexible

enough to deal with the case when the extent of over fitting goes strong as the number of lags

incease.

These two are jointly conducted together. Our analysis is based on above empirical tests. Dates

chosen for comparison are 1975 Q1, 1981 Q3 and 1996 Q1. They are somewhat representative of

the typical economic conditions of the chairmanships of Burns, Volcker and Greenspan, but apart

from that, they are choosen arbitrarily. Enough number of factors is chosen for each model accord-

ing to Table 2.1 and Table 2.2 so as to avoid the potential concern that the bulk of variation not fully

captured by less than enough factors could affect inference and might lead wrong understanding.

11We have estimated the model of the factor settings on lags, namely the general factor-driven model presented in
section 2. The result is messy to conduct instructive analysis. A reasonable interpretation is that the dynamic inter
relationship among the variables has been distorted by the the constant and the first lag.
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Figure 2.5: TVP-VAR-CV-lag1-factor7-IR-inflation

Notes: This is TVP-VAR with 1 lag, 7 factors driving time variation in coefficients on regressors
and common volatility. The upper left panel plots median impulse responses of inflation to mone-
tary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remaining three panels plot difference
of responses between every two periods mutually, with solid line representing median and dashed
lines for 16th percentile and 84th percentile respectively.
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Figure 2.6: TVP-VAR-CV-lag1-factor7-IR-unemployment rate

Notes: This is TVP-VAR with 1 lag, 7 factors driving time variation in coefficients on regressors
and common volatility. The upper left panel plots median impulse responses of unemployment rate
to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remaining three panels plot
difference of responses between every two periods mutually, with solid line representing median
and dashed lines for 16th percentile and 84th percentile respectively.
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Figure 2.7: TVP-VAR-CV-lag2-factor3-IR-inflation

Notes: This is TVP-VAR with 2 lag, 3 factors driving time variation in coefficients on regressors
and common volatility. The upper left panel plots median impulse responses of inflation to mone-
tary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remaining three panels plot difference
of responses between every two periods mutually, with solid line representing median and dashed
lines for 16th percentile and 84th percentile respectively.
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Figure 2.8: TVP-VAR-CV-lag2-factor3-IR-unemployment rate

Notes: This is TVP-VAR with 2 lag, 3 factors driving time variation in coefficients on regressors
and common volatility. The upper left panel plots median impulse responses of unemployment rate
to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remaining three panels plot
difference of responses between every two periods mutually, with solid line representing median
and dashed lines for 16th percentile and 84th percentile respectively.
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For model of one lag, we choose 7 factors since 7 factors can cover all the important factors

that together accounting for near 100% evidenced by Table 2.1 and Fig 2.1. In Fig 2.5 upper left

panel, we find strong ‘price puzzle’ in each period respectively, a typical finding in small scale

monetary VAR. The remaining three graphs show the median of the distribution of the difference

of inflation responses between every two periods mutually with lower 16th percentile and upper

84th percentile confidence band. There are no significant difference among three periods in that

every cofidence band contains a zero line. The response of unemployment rate increase, see Fig

2.6, in each period consistent with economic theory. The difference of unemployment responses

between every two periods are not significant with zero. As for the model with two lags, we

choose 3 factors in order to cover as much time variation as possible even though the first factor

has already taken 96% seen in Table 2.1. The price puzzle disappears, in Fig 2.7, for each period;

Inflation decline after positive monetary policy shock. The difference of inflation responses every

two periods is not significant in the remaining panel. Unemployment rate increase in each period

and no significant difference mutually in Fig 2.8. When the model goes from 2 lags to 3 lags with

the same 3 factors as they have the same factor driving style, we find that, in both Fig 2.9 and

Fig 2.10, the results are almost the same: inflation went down and unemployment went up each

period, and the dynamic process in each response function is significantly no difference. Though

the model is of more over-parameterization, the parsimonious estimation of factor driving gives the

qualitatively and quantitatively the same results. How about the model of four lags when it become

further over-fitting with 39 coefficients? We assign again 3 factors and still find the qualitatively

and quantitatively the same results in Fig 2.11 and Fig 2.12.12

The common volatility for each model in Fig 2.13 illustrates almost the same dynamic property

of the U.S. business cycle. The level of commom volatility was climbing during the 1970s up to the

peak in early 1980s during which Fed Chairman Volcker implemented monetary targeting policy,

after that from middle 1980s the volatility declined and stayed on a low level in a whole 1990s and

12We assign 3 factors to the portion of time varying coefficients for models of 3 lags and 4 lags in order to make
sure most amount of variation can be covered. Actually, one factor for 2 lags, 3 lags and 4 lags already works well
respectively.
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Figure 2.9: TVP-VAR-CV-lag3-factor3-IR-inflation

Notes: This is TVP-VAR with 3 lag, 3 factors driving time variation in coefficients on regressors
and common volatility. The upper left panel plots median impulse responses of inflation to mone-
tary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remaining three panels plot difference
of responses between every two periods mutually, with solid line representing median and dashed
lines for 16th percentile and 84th percentile respectively.
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Figure 2.10: TVP-VAR-CV-lag3-factor3-IR-unemployment rate

Notes: This is TVP-VAR with 3 lag, 3 factors driving time variation in coefficients on regressors
and common volatility. The upper left panel plots median impulse responses of unempoyment rate
to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remaining three panels plot
difference of responses between every two periods mutually, with solid line representing median
and dashed lines for 16th percentile and 84th percentile respectively.
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Figure 2.11: TVP-VAR-CV-lag4-factor3-IR-inflation

Notes: This is TVP-VAR with 4 lag, 3 factors driving time variation in coefficients on regressors
and common volatility. The upper left panel plots median impulse responses of inflation to mone-
tary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remaining three panels plot difference
of responses between every two periods mutually, with solid line representing median and dashed
lines for 16th percentile and 84th percentile respectively.
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Figure 2.12: TVP-VAR-CV-lag4-factor3-IR-unemployment rate

Notes: This is TVP-VAR with 4 lag, 3 factors driving time variation in coefficients on regressors
and common volatility. The upper left panel plots median impulse responses of unemployment rate
to monetary policy shocks in 1975 Q1, 1981 Q3 and 1996 Q1. The remaining three panels plot
difference of responses between every two periods mutually, with solid line representing median
and dashed lines for 16th percentile and 84th percentile respectively.
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Figure 2.13: Common volatility in different model settings

early 2000s, then gradully increased at the end of the sample.

Connecting the above analysis together, we find that i) in the model of one lag even with enough

7 factors capturing almost all the variation in coefficients, we still find price puzzle. As discussed

in empirical test via principal component analysis, one lag can not sufficiently release and probably

distort the dynamic inter relationships among variables. This is a problem of lags, not a problem

of factor driving. Therefore, using the first lag to drive the other lags is not a good choice. ii)

When having enough lags and even more lags to make the model more over parameterization, the

factor driving model works very well on every setting, giving almost the same results on impulse

response function and volatility. All these fully demonstrate that the factor-driven model is flexible

enough to capture main driving forces and give consistent interpretation in the context of the model

with over-fitting problem, especially when the extent of over parameterization is very serious (the

model with 4 lags).
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2.5 Concluding remarks

In this chapter, we present a model that gives a general treatment via factor driving on the three

parts of conventional TVP-VAR model, namely, the part of time varying coefficients on regressors,

the part of lags and the part of stochastic volatility. These three portions are sources of parameter

proliferation. The general model uses several factors to drive the dynamic process of all the time

varying coefficients; uses the first several lags to drive other remaining lags; and uses a latent factor

to drive the volatilities of all variables, i.e. the common volatility. These factor drivings can be

jointly or separately used depending on specific object one meets.

We also provide a Bayesian estimation procedure on this general model step by step, which

can be nested, divided and modified according to the factor driving portion one needs.

We finally conduct an empirical analysis on the typical small scale monetary TVP-VAR. Strong

evidences of over parameterization are found over one lag to four lags. This is the starting point

of our general parsimonious treatment of the standard TVP-VAR model. Empirical analysis shows

that the factor-driven model is strong enough and flexible enough to capture the main driving forces

even in a serious over-fitting setting and still give consistent results.

A point should be pointed out is that the factor-idea-based model must stand on the precondition

that the dynamic process among data set is correctly expressed. If not, the model is estimable, but

not instructive.

The future research could be applying the model to large data set or conducting forecasting

exercise.
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Appendix

A. Bayesian estimation of restricted linear regression model

Here, we consider a multivariate linear regression case.

Consider that the linear regression model has the form:

yt = Xtβ +ut

where yt is an n×1 vector of regressands, Xt is n×k matrix of regressors, β is k×1 corresponding

parameters and ut ∼ N (0,Σt). Stacking the above equation over time periods and holding all the

data together, one can obtain

y = Xβ +u

where y =
[
y
′
1, . . . .y

′
T

]′
, X =

[
X
′
1, . . . ,X

′
T

]′
and u =

[
u
′
1, . . . ,u

′
T

]′
with u ∼ N (0,Ω) and Ω =

Blkdiag
(
{Σt}T

t=1

)
.

We first consider Bayesian estimation of unrestricted linear regression model. Set prior for β :

β ∼ N
(

β ,V β

)
(2.36)

then the posterior is

β ∼ N
(
β̄ ,V̄β

)
with

β̄ = V̄β

(
X
′
Ω
−1y+V−1

β
β

)
(2.37)

V̄β =
(

X
′
Ω
−1X +V−1

β

)−1
(2.38)
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Now consider linear restriction on coefficients

Rβ = 0 (2.39)

where R is a q× k matrix with rank (R) = q and q ≤ k. The posterior of β can be derived by

pooling the linear regression model, the prior information and the linear restriction condition above

together:

y = Xβ +u (2.40)

β = β + v (2.41)

0 = Rβ +η (2.42)

where v ∼ N(0,V β ) and η ∼ N
(
0, 1

λ
Iq
)
. Equation (2.41) is prior inforamtion in equation (2.36)

and equation (2.42) is linear restriction of (2.39) when λ → ∞. The posterior of restricted β for a

given λ can be obtained by conducting generalized least square estimation of the pooled regression

model (2.40) - (2.42):

βres (λ )∼ N
(

β̃ (λ ) ,Ṽ (λ )
)

with

β̃ (λ ) =
(

X
′
Ω
−1X +V−1

β
+λR

′
R
)−1(

X
′
Ω
−1y+V−1

β
β

)
(2.43)

Ṽ (λ ) =
(

X
′
Ω
−1X +V−1

β
+λR

′
R
)−1

(2.44)

Following De Wind and Gambetti (2014), (2.44) is further expanded, by matrix inversion lemma,

to13

Ṽ (λ ) =
(

X ′Ω−1X +V−1
β

)−1
−(

X ′Ω−1X +V−1
β

)−1
R′
(

λ
−1Iq +R

(
X ′Ω−1X +V−1

β

)−1
R′
)−1

R
(

X ′Ω−1X +V−1
β

)−1

13Matrix inversion lemma: (A+BCD)−1 = A−1−A−1B
(
C−1 +DA−1B

)−1 DA−1
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Since equation (2.37) and equation (2.38), posterior of βres (λ ) for a given λ can be expressed in

terms of unrestricted posterior of β :

β̃ (λ ) =

(
Ik−V̄β R

′
(

λ
−1Iq +RV̄β R

′
)−1

R
)

β̄

Ṽ (λ ) =
(

Ik−V̄β R
′
(

λ
−1Iq +RV̄β R

′
)

R
)

V̄β

With above prepared expression, letting λ → ∞, the posterior of βres follows

βres ∼ N
(

β̃res,Ṽres

)

with

β̃res =

(
Ik−V̄β R

′
(

RV̄β R
′
)−1

R
)

β̄

Ṽres =

(
Ik−V̄β R

′
(

RV̄β R
′
)−1

R
)

V̄β

and β̄ is from (2.37), V̄β from (2.38).
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Chapter 3

Structual Analysis in a Large Bayesian VAR
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3.1 Introduction

In previous two chapters, We have studied time-varying parameters vector autoregressive regres-

sion models with stochastic volatility or common volatility. As we know that vector autoregessive

models are unrestricted models and relatively easily tractable with good properties such as impulse

response function and variance decompositon for the future dynamics or historical decomposition

for the past, therefore it is widely used by practioners, reseachers and policy-makers in economic,

policy ananlysis and forecasting. In addition, since endogenous variables in a vector inter act

each other that can capture very complicated relationships in an economy which economists are

interested in, and most importantly some of the relationship among those variabes are still vague,

disputable or even unknown, such as typiclly the effects of monetary policy on the performance

of economy, the relationship between financial market and real economy, and recently the uncer-

tainty shocks that is paid more and more attention after global financial crisis of 2008 and in the

subsequent still slow recovery, VARs are used again and again to find inner possible relationships

that have not been explored by theoretical models and thus VARs are also good instructions for the

direction of theoretical analysis.

Nevertheless, everything has its two sides. VAR is not a parsimonious model due to its unre-

stricted structures that are very suitable to expose blackboxes in economy but it is hard to estimate

in parctice when the number of observations in a vector increase. Its advantege cause its disad-

vantage. Typically, in empirical analysis, a VAR has three or five, at most ten variables, but seen

otherwise without any restrictions, no matter in static VAR models or TVP-VAR models as we

have discussed in the previous chapers. Chapter 1 focuses on the significance of the time varying

parameters over each identity and each time via stochastic variable selection and provide a method

to estimate them efficiently in practice; Chapter 2 lies in reducing dimension of the TVP-VAR with

SV via factor idea. Namely, we use factors to represent and reduce number of lags, coefficients on

regressors and volatilities in order to make a parsionious estimation with potentional over-fitting

problem. That is different with the ever increasing literature that mainly on reducing the dimension

of obsevations when one meet rich data enviroment such as facor models begining with Geweke

118



www.manaraa.com

(1977) and factor augmented VAR recommended by Bernake, Boivin and Eliasz (2005) and Stock

and Watson (2005).

In this chapter, we still look at vector autoregressive models in constant parameters, rather than

time variant, discussed in Chapter 1 and Chapter 2. The VAR model with constant parameters

probably is the most widely used one in paractise. Economist and practioners have again and agian

proved that VARs with constant parameters still do a good job in economic analysis, policy mak-

ing and forecasting compared to other type of VARs like TVP-VAR or regime switching VAR.

Banbura, Giannone and Reichlin (2010) argue that vector regression with Bayesian shrinkage is

an appropriate tool for large dynamic models. Building on the results of De Mol and co-authors

(2008), they show that when the degree of shrinkage is set in relation to the cross-sectional dimen-

sion, the forecasting performance of small monetary VARs can be improved by adding additional

maroeconomic variables and sectoral information. In addition, VARs with shrinkage produce cred-

ible impulse responses and are suitable for structural analysis.

Small VARs have the limitation that the information incorporated in the model is very small,

while in real economic world, we have hundreds of maroeconomic data published by governtment

agency and research institution. For example, central banks usually obseve and investigate a large

amount of data in decision making of their policy; Economic agency in an economy can not deter-

mine their final behavior within small number of observations. A small information-involved VAR

sometimes cause misleading and misunderstanding, a typical case is of ‘prize puzzle’ due to the

missing of forward looking variables in VAR analysis. However, if a VAR with more variables will

inevitably lead parameter proliferation. As suggested by Banbura et al. (2010), the way to deal

with the problem is to impose proper priors of shrinkage on the parameters. On the priors with

property of shrinkage, the parameters that are important for the variables will be strenghen while

less important will shrink to zero or a limit value.

Follwing Banbura et al. (2010) with proper priors, we conduct an empirical analysis on three

important shocks: monetary policy shock, uncertainty shock and financial shock. Monetary pol-

icy shock and its transmission mechanism, as we known, are very important to central banks and
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economic agencies. It reflects central banks’ stance to the current economic performance and what

kind of policy they conduct, and meanwhile how agencies react to such stance and policy imple-

mentaion. The second - uncertainty shocks and the third - financial shocks recently are more and

more jointly considered, in paticular, in the current situation of slow recovery. Researchers find

that uncertainty and financial market are strongly tangled each other. They are both channels and

shocks. They are both potentially important drivers in business cycle and display strong nonlinear-

ity in different economic stages. We use a large data set which contains 28 variables that cover a

broad range of an economy such as goods market, labor market, financial market and so on. By

the large VAR, we jointly identify and investigate the three shocks and their transmisson. We find

some interesting results via Bayesian estimation with shrinkage priors.

This chapter is organized as follows. In the second section, we discuss some issues on the large

Bayesian VAR and the inter relationship among financial market, uncertainty and monetary policy.

In section 3, we give the theoretical background of the prior on shrinkage, model specification and

posterior in terms of large cross-sectional data set. Section 4 conducts empirical analysis and gives

some important findings we obtain and implications we infer from the large Bayesian VAR. The

last section concludes.

3.2 The literature

In this section, some issues will be discussed in current literature on the model and on the shocks

and their transmission, respectively.

We first look at the model.

In econometric literature on VAR models, a very important issue is how to deal with the po-

tential over parameterization problem inherited in VARs and the accessibility of high dimensional

data set. This two typically join togther. Researchers would like to include more observations

in the dynamic model in order to expose and explore complicated inner relationships that samll

scale model is unable to do, at the same time if more variables are incorporated, the number of
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parameters will nonlinearly, dramatically proliferate, making the estimation and inference infeasi-

ble even large data is availabe. Generally, there are three branches in dealing with this dilemma.

One is on reducing data dimension by factors. Since the Geweke (1977), factor modes have been

the most common way of achieving this goal. Applications such as Forni and Reichlin (1998),

Stock and Watson (1999, 2002b), Bernake and Boivin (2003), have popularized factor methds

among macroeconomists. Bernake, Boivin and Eliasz (2005) and Stock and Watson (2005) have

combined factor methods with VAR methods. Del Negro and Otrok (2008) and Korobilis (2013a)

provide further time varying parameter extension to these models. The second is on lowering

the dimension of parameters of the model still using the factor idea. Indeed, factors that drive

large observations can substantially limit the over-fitting problem, which is specially prominent in

constant-parameter VARs, however, when it comes to time varying ones, the number of parame-

ters in the case of constant-paramer model will be multiplied by the periods of sample size. The

number of parameters again becomes very large even in a small scale TVP-VAR as discussed in

Chapter 2. To deal with the problem, Kim and Yamamoto (2012) use coefficients on recent lags

as factors to drive distant lags; De Wind and Gambetti (2014) decompose the covariance matrix of

innovations to time varying parameters and extract several factors to drive whole dynamic process

of all the time varying coefficients. Note that the covariance matrix associated with the parame-

ters become reduced rank; Carriero, Clark and Marcellino (2012) present a model applying latent

factor, i.e. common volatility to represent fully stochatic volatility on each variable justfied by the

observation that most maroeconomic variables share very similar pattern of estimated volatility.

They are all trying to limit parameter dimension in the context of time varying coefficient fram-

work. The last is on shrinking the parameters via imposing priors. Probably the most classic one

is Minnesota prior (see Doan, Litterman and Sims, 1984 and Litterman, 1986). The basic idea of

the prior is that it makes model implement like a random walk process. There are also other priors

on stochastic search variable selection (SSVS) (see George, Sun and Ni, 2008). This paper focuses

on the third branch, namely, setting suitable priors to shrink the parameters of the large VAR via

Bayesian method. For the first and the third branch, Koop and Korobilis (2010) have given a good
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survey on them.

The second issue is about the empirical analysis. Here, we discuss financial market and uncer-

tainty jointly. The literature has identified at least three channels through which uncertainty shocks

impose impact on economic activity. First, unceratin can affect the behavior of firms (Bernake,

1983; Bloom, 2009). A key concept in this framwork is irreversibility in investment. If invest-

ment decisions are irreversible, firms must take investment decisions that trade of the extra returns

from early commitment agianst the benefit of having more informatioin by waiting. Bernake’s real

options framwork captures the notion that when uncertainty is high, the option value of waiting

increases as it may be beneficial for firms to wait and acquire more information before deciding

to invest in a real asset. The second, higher uncertainty may induce households to save more as

higher uncertainty about future income will delay consumer spending, in particular on durable

goods (Romer, 1990). The last channel is via financial maket for which a more recent strand of

research places financial rather than real frictions at the center of the transmission mechanism

(Arellano et al., 2012; Christiano et al., 2014; Gilchrist et al., 2014). If financial contracts are

subject to agency problem or moral hazard probem, a rise in economic uncertainty increase the

premium on external finance, leading to an increase in the cost of capital faced by firms or borrow-

ers and thus a fall in investment. These three channels mixed together, especially the last channel

makes that uncertainty and financial market should be considered together.

In empirical works, Beetsma and Giuliodori (2012) use linear VARs via rolling windows and

show that the impact of uncertainty shocks on output in the US has decreased over the last five

decades. Hartmann et at. (2012) use a regime switch (with fixed probability) model to estimate

the links between financial stress and macroeconomic variables. They find that financial shocks

have more serious impact on real variables in high financial stress regime than in normal times.

Bijsterbosch and Guerin (2014) also use a regime swithing model to study regime-dependent re-

lationship between uncertainty and economic activity. They find that only the third regime - the

highest uncertainty regime are associated with a weaker growth performacne and sharp decline in

stock price.
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Caggiano et al. (2014) use instead a smooth - transition VAR (with continous probability)

where parameters are allowed to depend on the state of the business cycle. They find that, using

U.S. quarterly post-war data, uncertainty shocks have a stronger impact on unemployment during

recessions. The above researches only independently study the uncertainty or financial conditions,

not jointly together. It is crucial if the ‘financial view’ of the third channel discussed above plays

a very important role. To our best knowledge, the Alessandri and Mumtaz (2014) probably the

first to study the joint relationship of uncertainty and financial condition to check the importance

of the ‘financial view’ in literature. Their model is very innovative in twofolds. First, the effects

of uncertainty is dependent on the different financial conditions which is determined by a threhold

variable that represents financial conditions on different stage rather than business cycle stages

defined by NBER. Second, the uncertainty is generated endogenously from the common stachastic

volatility as we discussed in Chaper 2 and the common volatility can be regarded as uncertainty

proxy that is placed in the regressor, then the volatility generated from the model itself have the

effects on the endogenous variables. This model is so called volatility in mean. The idea of using a

single volatility process in a multivariate model has been introduced by Carriero et al. (2012) while

volatility in mean effects are studied in the context of otherwise linear VAR models by Mumtaz

and Thedoridis (2012), Mumtaz and Surio (2013) and Mumtaz and Zanetti (2013).

The above linear or nonliner VAR models as tool to study uncertainty and financial market

jointly or indepently all belong to small scale VAR models. Caggiano et al. (2012) have four

variables, namely the uncertainty proxy of VIX index and inflation, umeployment and federal

funds rates. Alessandri and Mumtazi (2014) also use four variables including a financial condition

proxy. Bloom (2009), perhaps the most, contained eight observations. Except for the Banbura et al.

(2010), large Bayesian VAR models are seldom used in structual analysis though recommended

by them in terms of large information of great view. We only find three works related with it.

Gupta et al. (2012) study the effects of monetary policy on housing sector dynamics in a large

sacle Bayesian VAR with 143 monthly macrovariables. Auer (2014) consider another direction of

monetary policy shock on foreign investment income from a large VAR with 32 variables. Sanjani

123



www.manaraa.com

(2014) use quarterly data of 34 variables to study financial frictions. In this chapter, we use a

large data set of 28 observables to jointly identify and analyse the effect of each structual shock

on different dimension of the U.S. economy. In the next section, the large Bayesian VAR model is

presented and the priors on shrinkage are discussed.

3.3 The model

3.3.1 The likelihood of VAR

Let’s consider a VAR model with p lags. It can be typically written as

yt = c+B1yt−1 + · · ·+Bpyt−p +ut (3.1)

where yt is an n× 1 vector containing n endogenous observations; c is also n× 1 constant term;

coefficients on lags are from B1 to Bt−p with corresponding dimension n× n and ut is residual

follows ut ∼ iddN (0,Σ). The above equation is the expression for each period, it can be rewritten

in the form of nesting all the data, that is in a compact form

Y = XB+U (3.2)

where equation (3.2) is obtained with matrices xt =
[
y
′
t−1, . . . ,y

′
t−p,1

]′
, then the X = [x1, . . . ,xT ]

′

and accordingly B = [B1, . . . ,Bt−p,c]
′
as well as U = [u1, . . . ,uT ]

′
. By column stacking operator of

both sides of equation (3.2), we further have the form

y = (In �X)β +u (3.3)

where y = vec(Y ), β = vec(B), u = vec(U) and u ∼ N (0,Σ� IT ) with vec column stacking op-

erator and � Kronecker product. The regressors in the brackets are obtained by vec(X ·B · I).1

1vec(ABC) =
(

C
′
�A
)

vec(B)
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Note that y = [y1; . . . ;yn] where yi is a T ×1 vector collecting all observations belonging to i, there-

fore y is a T n× 1 column. u has the similar structure as y. The likelihood of (3.3) based on the

multivariate normal distribution of u is written as

f (y|β ,Σ) ∝ |Σ|
T
2 exp

(
1
2

u
′
(Σ� IT )

−1 u
)

by the transformation formula tr (ABC) = vec
(

A
′
)′
(I �B)vec(C), the above is equal to

f (y|β ,Σ) ∝ |Σ|
T
2 exp

(
1
2

tr
(
(Y −XB)

′
(Y −XB)Σ

−1
))

(3.4)

The above likelihood after leaving out the constant term that does not affect finding distribution

kernels, can be decomposed into two components: f (β |Σ,y) and f (Σ|y). The former follows

multi-variate normal distribution and the latter follows inverse wishart distribution. By the equation

that (Y −XB)
′
(Y −XB) =

(
Y −XB̂

)′ (
Y −XB̂

)
+
(
B̂−B

)′
X
′
X
(
B̂−B

)
, where B̂ =

(
X
′
X
)−1

X
′
Y

is the least square estimate of B, equation (3.4) gives

f (y|β ,Σ) ∝ |Σ|−
k
2 exp

(
−1

2
tr
((

B̂−B
)

X
′
X
(
B̂−B

)
Σ
−1
))

(3.5)

|Σ−
T−K

2 |exp
(
−1

2
tr
((

Y −XB̂
)′ (

Y −XB̂
)

Σ
−1
))

(3.6)

the first equation (3.5) is the kernel of the matrix normal distribution and the second (3.6) is the

kernel of the inverse wishart distribution. It is more convenient to rewrite the matrix normal distri-

bution in terms of the multivariate normal distribution, so that

β |Σ,y∼ N
(

β̂ ,Σ�
(

X
′
X
)−1

)
(3.7)

Σ|y∼ IW
(
Ŝ,T − k−n−1

)
(3.8)
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where β̂ = vec
(
B̂
)
, Ŝ =

(
Y −XB̂

)′ (
Y −XB̂

)
and k = np+1

From the above derivation, we know that the likelihood function of a VAR is a product of two

conditional distributions.

3.3.2 The priors

First we introduce the Minnesota prior. The basic idea of Minnesota prior is that all the equations

are ‘centered’ around the random walk with drift, which means that Yt = c+Yt−1+ut . This means

diagonal of B1 shrink to one and the remaining elements of coefficient matrix from B1 to Bp

towards to zero. Any element of coefficient matrices independently follows a normal distribution

satisfying the moment conditions

E
[
(Bk)i j

]
=


δi, j = i,k = 1

0 otherwise
(3.9)

V
[
(Bk)i j

]
=


λ 2

k2 , j = i

ν
λ 2

k2
σ2

i
σ2

j
, otherwise

(3.10)

which reflects that diagonal elements of coefficient matrix on the first lag centered on δi. If δi

shrinks to 1, it is random walk; If δi converges to0, it is white noise. The diagonal covariance

matrix V on each Bk implies two beliefs that more recent lags are more important than more

distant lags which can be seen that as k → p, the magnitude of the variance, i.e. the range of

flucuation become narrower and narrower and accordingly coefficients on far lags shrink more

quickly to zero and that own lags of a variable have more powerful interpretation than foreign lags

which can be found on the value of ν ∈ (0,1). In the original version of Minnesota prior, it has

a hyper parameter to control tightness on each line of (3.10). In Banbura et al. (2010), the hyper

parameter on the first line has been normalized, therefore ν takes the range. We follow the way of

Banbura. Finally, let’s look at the λ which controls the overall tightness of the prior distribution.
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The λ shows up on both lines of (3.10), which means that as λ → 0, the posterior is equivalent

to the prior and the data is perfectly dominated by prior information; when λ → ∞, the very flat

prior, then the posterior equals likelihood and prior plays no role. De Mol et al. (2008) show that

the parameters should be shrunk more so as to alleviate over-fitting when the number of variables

increases. σ2
i /σ2

j shows the scale and variability of the data. These values can be set by residual

variance on AR(p) regression on each variable in a large data set.

The original Minnesota prior assumes that covariance matrix Σ of ut is fixed and diagonal. If

one is interested in structural analysis, Σ should be imposed as a full matrix to allow for possible

correlation among residual of different variables. To overcome the problem, following Kadiyala

and Kalsson (1977), Banbura et al. (2010) impose a normal inverse wishart prior on (β ,Σ) under

the condition that ν = 1. This prior can retain the principles of the Minnesota prior. The normal

inverse wishart prior has the form

vec(B) |Σ ∼ N (vec(B0) ,Σ�Ω0) (3.11)

Σ ∼ IW (S0,α0) (3.12)

Since (3.7) and (3.8) are also the same distributions, the product of (3.11) and (3.12) is the like-

lihood of prior information. By this link, imposing prior on likelihood is equivalent to adding

dummy observations to the original data set which demonstrates the advantage of natural con-

jugate prior of normal inverse wishart prior. Following (3.7) and (3.8), the prior parameters B0,

Ω0, S0 and α0 can be expressed by dummy observations: B0 =
(

X
′
dXd

)−1
X
′
dYd , Ω0 =

(
X
′
dXd

)−1
,

S0 = (Yd−XdB0)
′
(Yd−XdB0) and α0 = Td− k−n−1 where k = np+1.

It can be shown that the dummy variables Xd and Yd involving Minnesota moments of (3.9) and
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(3.10) are

Yd =



diag(δ1σ1, . . . ,δnσ)/λ

0n(p−1)×n

· · ·

diag(σ , . . . ,σn)

· · ·

01×n



Xd =



Jp � diag(σ1, . . . ,σn)/λ 0np×1

. . .

0n×np 0n×1

. . .

01×np ε


where Jp = diag(1,2, . . . , p).

We also include an additonal prior, which implements a so-called ’inexact differencing’ of the

data. More preciselty, rewrite the VAR equation (3.1) in an error correction form:

4yt = c+Πyt−1 +B?
14yt−1 + · · ·+B?

p−14yt−p+1 +ut

where B?
s =−Bs+1−·· ·−Bp, s = 1, . . . , p−1 and Π = B1 + · · ·+Bp− In.

A VAR in first difference implies the restriction Π = 0 or A1 + · · ·+Ap = In. We follow Doan

et al. (1984) and set a prior that shrinks Π to zeros. Specially, we set a prior that is centered at 1 for

sum of coefficients on the own lags for each variable, and at 0 for the sum of coefficients on other

variables’ lags. This prior introduces correlations among the coefficients on each variable in each

equation. The tightness of this prior on the sum of ‘coefficients’ is controlled by the hyparameter

τ . As τ goes infinity, the prior becomes diffuse, whereas as it goes to zero, we approach the case

of exact differencing, which implies the presence of a unit root in each equation. In the literature,

it is usually implemented by adding the following dummy observations:
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Y ?
d = diag(δ1µ1, . . . ,δnµn)/τ (3.13)

X?
d =

( (
11×p

)
� diag(δ1µ1, . . . ,δnµn)/τ 0n×1

)
(3.14)

The incorporation of this sum of coefficients prior serves to increase accuracy of forecast and

avoid confidence band explosiveness in long horizons for impulse response functions.

3.3.3 The posterior

As discussed above, implementation of priors is equivalent to adding dummy observations trans-

formed from priors, now the equation (3.2) is augmented to

Y ? = X?B+U (3.15)

where T ? = T +Td +T ?
d , Y ? =

(
Y
′
,Y
′
d,Y

?′
d

)′
and X? =

(
X
′
,X
′
d,X

?′
d

)
with Td = n(p+1)+1, T ?

d = n.

To ensure the existence of the prior expectation of Σ, it is necessary to add an improper prior

Σ∼ |Σ|−(n+3)/2. After that the posterior has the form

vec(B) |Σ,Y ∼ N
(

vec
(

B̃,Σ�
(

X?′X?
)−1

))

Σ|Y ∼ IW
(
Σ̃,Td +T ?

d +2+T − k
)

where B̃=
(

X?′X?
)−1

X?′Y ? and Σ̃=
(
Y ?−X?B̃

)′ (
Y ?−X?B̃

)
which are typical setting for normal

inverse wishart distribution as seen in (3.7) and (3.8).

3.4 Empirical analysis

In this section, we apply the large Bayesian VAR model with priors of shrinkage to a large data set

which contains 28 variables covering a broad range of the U.S. economy. We focus three shocks

which are monetary policy shocks, uncertainty shocks and financial shocks.
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3.4.1 The data

Since large Bayesian VAR with proper shrinkage priors is able to deal with large data set, the

whole information in the data can be directly used to explore complicated dynamic process among

different variables avoiding possible missing variable bias. Following Sanjani (2014), we select 28

variables that generally can give a comprehensive description of the economy of U.S.

This data covers labor market, housing market, labor market, government bonds market, cor-

porate bonds market and so on. To identify uncertainty shock and financial shock, we include

VIX index proxy for uncertainty measure and Chicago Fed national financial condition index for

financial condition measure.

As for uncertaity, three types of measure can be found: financial market indicators, survey

based measures including forecast dispersion measures and media measures based on the number

of citations of a specific term. Other measures are more microeconomic in nature and based on

various indicators of dispersion at individual company or industry level. In this paper, we choose

the VIX index due to two reasons. First it is widely used as standard uncertainty measure (Bloom,

2009) and second it covers long period since 1962 the third quarter.

For the financial conditons, the Chicago Fed national financial condition index is chosed. It

is a real-time indicator of financial distress constructed and maintained by the Chicago Fed and

described extensively in Brave and Butters (2012). The index extracted using dynamic factor

analysis from a set of 120 series that describe a broad range of monetary, debt and equity markets

as well as the leverage of the financial industry. Another advantage of the data is that it covers the

longest periods since 1973 the first quarter.

We use quarterly data from 1973 the first quarter to 2009 the last quarter that covers the longest

period for all the 28 variables.

3.4.2 Empirical findings

We use 28 quarterly data form 1973 Q1 to 2009 Q4 with 2 lags in large VAR in Bayesian estima-

tion. We also tried more lags, however, the results are robust.

130



www.manaraa.com

The identification of the monetary policy shocks, uncertainty shocks and financial shocks are

implemented in a recursive manner. For the identification of monetary policy shocks, the observa-

tions are divided into three blocks. The first one is slow moving block that contain variables not

sensitive in response to monetary policy shocks and react with one period lag. The second block

only contains the instrument of conventional monetary policy, namely the effctive fedral fund rate.

The last block contains variables that are very sensitive to the changes in monetary policy – the

surprise. All the variables in the third block are financial variables that cover government bonds,

corporate bonds, stock , exchange rate markets.

As for the identification of the uncertainty shock, I place VIX index for uncertainty measure

in the first place in the first block, that is VIX is the first variable among all the observations.

Caggiano et al. (2012) in a small scale nonlinear VAR for the U.S economy and Kamber et al.

(2013) in a factor augmented VAR model for small open economy of New Zealand, both place

uncertainy measure of VIX in the first. In order to make the uncertainty measure as compatible

as possible with the identification restriction - uncertainty is not affected immediately by other

shocks, following Kamber et al. (2013), the quarterly data is constructed by only choosing the

first month of the quarter. Regarding financial condition variable, it is ordered the last in the third

block. That is, the national financial condition index is the last one among all the observations in

the sense that this indicator responses to all the variables contemporarily. In practice, identification

of these shocks are conducted by cholesky decomposition of the covariance matirx of the residuals

in the large VAR.

Let’s first look at the effects of monetary policy shocks on the economy. Figue 3.1 plots the

response functions in median for all the 28 variables with dashed lines representing confidence

interval between 16th percentile and 84th percentile. From the responses, it is reasonable to believe

that the non-systematic monetary policy is well identified. One standard deviation monetary policy

shock cause almost all the responses in line with economic theory. Non-systematic monetary

shocks increase uncertainty that is recently empasized by Baker et al. (2013) in the current slow

recovery stage after the global financial crisis of 2008. Both real GDP and industrial production of
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different output measure decline in response to tightening policy. Capacity utilization gets down in

response to high interest rate. Residential investment responses much stronger than non-resdential

investment due to that they are more sensitive to financing cost. Consumer confidence is also

depressed by the tightening policy. With the increase in federal fund rate - the benchmark rate,

rates of all the government bonds and corporate bonds rise. Stock price declines as expected. U.S

dollar appreciates due to high return in international capital market. M1 and M2 decline reflecting

liquidity. Finally, tighten monetary policy elevates financial stress.

Then we look at the uncertainy shocks in Fig 3.2. Uncertainty shocks have countercyclical

effect on the economy. Capacity utilization decline. Real output, consumption, investment all

get down consistent with different economic theory on uncertainty. What is interesting is that

comparing with monetary shock, nonresidential investment decline facing futural uncertaity while

residential investment seems nonsensitive to the uncertainty relative to borrowing cost caused by

tightening monetary policy. Uncertainty also depresses consumer confidence. In respose to un-

certainty shock, federal fund rate lowers in order to stimulate the economic activity. Decline in

federal funds rate decreases government bonds rates while increase the Baa return. This means

that with high uncertainty, the effects of requiring high risk premium dominate the decline in short

rates for corporate bonds with low credit rating. M1 and M2 is improved by Fed policy. Stock

price decline and stay on a low level for the whole five years. Uncertainty cause national financial

conditon worse than before which is evidenced by the last graph in Fig 3.2.

As discussed in section 1 and section 2, financial market and uncertaity links together and affect

each other. On the main diagonal of Fig 3.3, financial shocks increase the uncertainty. Financial

shocks affect real activity for a long period. Compared response of industrial production in Fig 3.3

with that in Fig 3.2, the deline in IP caused by financial shock last for five years, while the effect

caused by uncertainy recover back after three or four quarters. We can find the same case in real

GDP, employment, hours worked, capacity utilization and nonresidential investment as opposed

to uncertainty shocks. Again residential investment becomes sensitive with financial tightness –

the same response with positive monetary shocks. In addtion, financial shocks seem to have no
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significant effects on financial variables except for financial condition index itself; In contract,

uncertainty shocks have strong effects on financial variables over government bonds, corporate

bonds, money, stock and foreign exchange rate markets.

In sum, through the large Bayesian VAR with data set covering broad range of the U.S. econ-

omy, we have three findings. First, increase in uncertainty cause tight financial conditions and tight

financial conditons lead high uncertainty (see the main diagonal of Fig 3.2 and Fig 3.3); Second,

both financial and uncertaity shocks cause counter-cyclical effects on real activity but financial

shocks have the effects kept for a long time; The last is that financial variables are much more

sensitive to uncertainty shocks compared to financial shocks.

3.5 Concluding remarks

In this chapter, we switch from time varying parameter VAR to constant parameter VAR in a rich

data environment. With the proper priors of shrinkage property imposed on the coefficients and

estimated by Bayesian method, the model conducts a good performance in structual analysis.

We jointly identified three shocks which are monetary policy shocks, financial shocks and un-

certainty shocks in a structural analysis. For the effects of monetary shocks, the impulse response

functions are in line with theoretical predictions. For the financial shocks and uncertainty shocks,

we analyse them together. Financial condition and uncertainty affect each other. Tight financial

condition elevates uncertainty and in turn, high uncertainty exacerbates financial condition. Both

positive financial and uncertainty shocks have negative effects on real activities, however, financial

shocks have more persistent effects on these real variables than uncertainty shocks. We also find

that financial variables care more for uncertainty shocks compared to financial shocks.

The empirical analysis implies that in a theoretical framwork such as DSGE model, the finan-

cial market and uncertainty should be combined together beacuse they are mutually as shocks and

channels, affecting each other and multiple dimensions of the economy evidenced by the large

Bayesian VAR.
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Figure 3.1: IRs to monetary policy shocks
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Notes: Impulse responses of 28 variables to monetary policy shocks with solid line representing
posterior median and dashed lines covering confidence interval between 16th percentile and 84th

percentile.
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Figure 3.2: IRs to uncertainty shocks
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Notes: Impulse responses of 28 variables to uncertainty shocks with solid line representing pos-
terior median and dashed lines covering confidence interval between 16th percentile and 84th per-
centile.
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Figure 3.3: IRs to financial shocks
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Notes: Impulse responses of 28 variables to financial shocks with solid line representing posterior
median and dashed lines covering confidence interval between16th percentile and 84th percentile.
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Appendix

A. Data specification

Notes: The data set consists of 28 U.S. quarterly variables from 1973 Q1 to 2009 Q4. Except for

consumer confidence index, effective exchange rate index and VIX volatility index, other data can

be found from Federal Reserve Economic Data - FRED - St. Louis Fed. The consumer confidence

index is from OECD. The effective exchage rate is from BIS. For the VIX index, the stock market

volatility is measured by realized volatility before 1986 and by Black - Scholes implied volatility

after 1986 (Choi, 2013).2 The quarterly data of VIX is constructed by choosing the first month of

each quarter following Kamber et al. (2013) to allow for lag effect in response to other shocks. For

the other quaterly data, they are all constructed by monthly average for a specific quarter. The ‘#’

column lists the order of the variables in the large VAR. In the ‘Tcode’ column, 1 means level, 2

means log level and ‘sa’ represents seasonally adjusted as well as ‘nsa’ not seasonally adjusted. In

the last ‘Id’ column, ‘f’ implies fast moving and ‘s’ slow moving.

2The monthly VIX index is kindly provided by Sangyup Choi.
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Table 3.1: Data specification

# Mnemonic Description Tcode Id

1 VIX CBOE Volatility Index 2 nsa s
2 RGDP Real gross domestic product 2 sa s
3 PPI Producer Price Index: finished goods 2 sa s
4 IP: total Industrial Production Index 2 sa s
5 Emp: total All employees: total private 2 sa s
6 Emp: services All employees: service providing 2 sa s
7 consp Real personal consumption expenditures 2 sa s
8 Res.Inv Residential private domestic investment 2 sa s
9 NonRes.Inv Nonresidential private domestic investment 2 sa s
10 Cap Util Capacity utilization: total industry 1 sa s
11 Cons Confid Consumer confidence index (OECD) 1 nsa s
12 Emp. Hours Hours of all persons: nonfarm 2 sa s
13 Real Comp/Hour Real compensation per hour: nonfarm 2 sa s
14 FFR Effective Federal Funds Rate 1 nsa -
15 3mTB Treasury Bill rate 3 months: second market 1 nsa f
16 6mTB Treasury Bill rate 6 months: second market 1 nsa f
17 1yTB Treasury Bill rate 1 year: constant maturity rate 1 nsa f
18 5yTB Treasury Bill rate 5 year: constant maturity rate 1 nsa f
19 10yTB Treasury Bill rate 10 year: constant maturity rate 1 nsa f
20 AAA yield AAA corporate bond yield 1 nsa f
21 BAA yield BAA corporate bond yield 1 nsa f
22 M1 M1 money stock 2 sa f
23 M2 M2 money stock 2 sa f
24 S&P 500 S&P’s common stock price index 2 nsa f
25 Ex rate Effective exchange rate index (BIS) 2 nsa f
26 NW 1 Market value of equities outstanding 2 nsa f
27 NW 2 Owners’ equity in household real estate 2 nsa f
28 FCI Chicago Fed national financial condition index 1 nsa f
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